October 2004

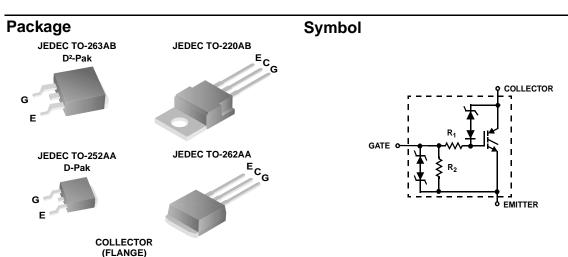
ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

EcoSPARK[™] 300mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V3040D3S, ISL9V3040S3S, ISL9V3040P3, and ISL9V3040S3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-262 and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK[™] devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.


Formerly Developmental Type 49362

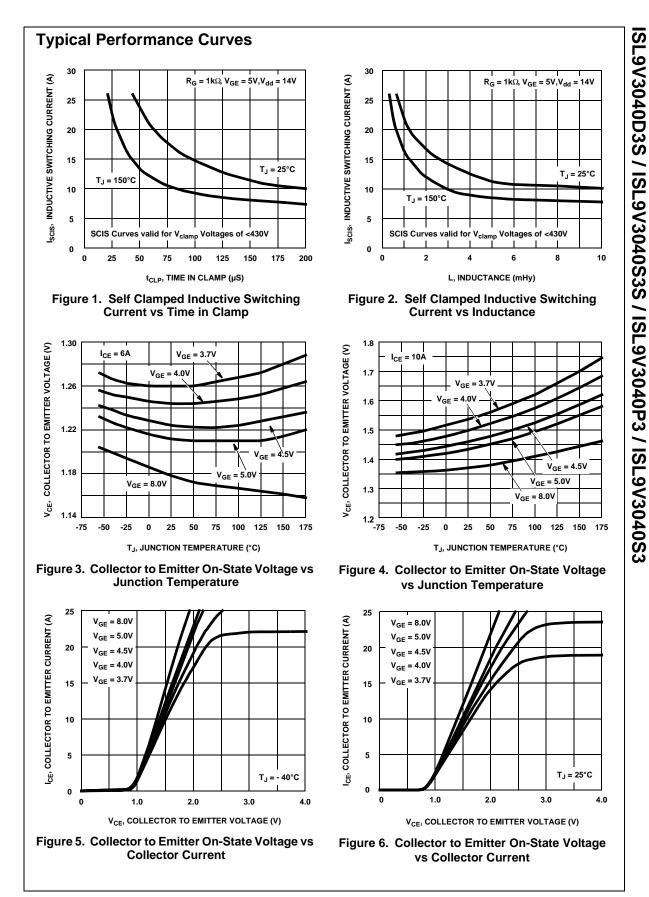
Applications

- Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

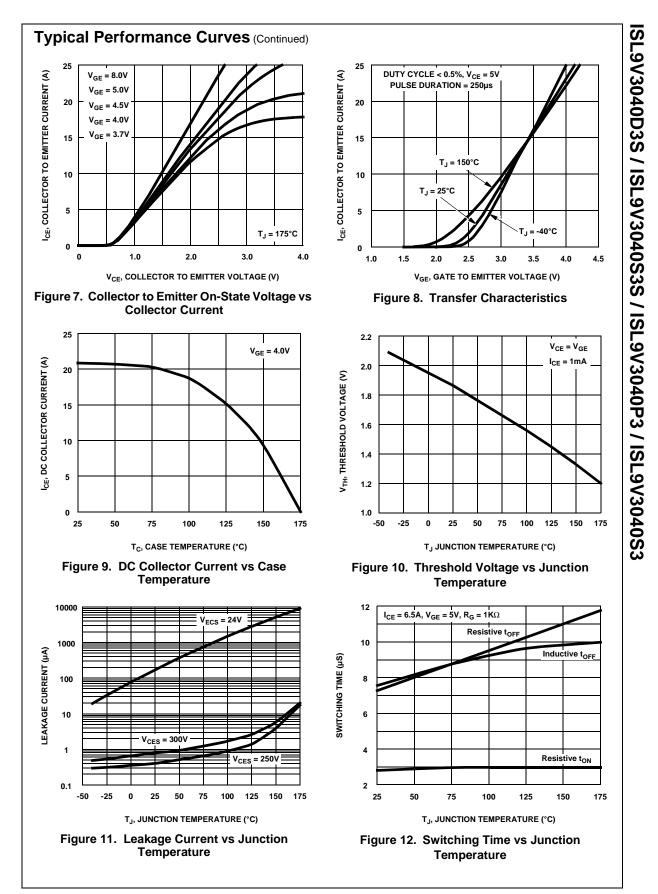
Features

- Space saving D-Pak package availability
- SCIS Energy = 300mJ at T₁ = 25° C
- Logic Level Gate Drive

Device Maximum Ratings T_A = 25°C unless otherwise noted

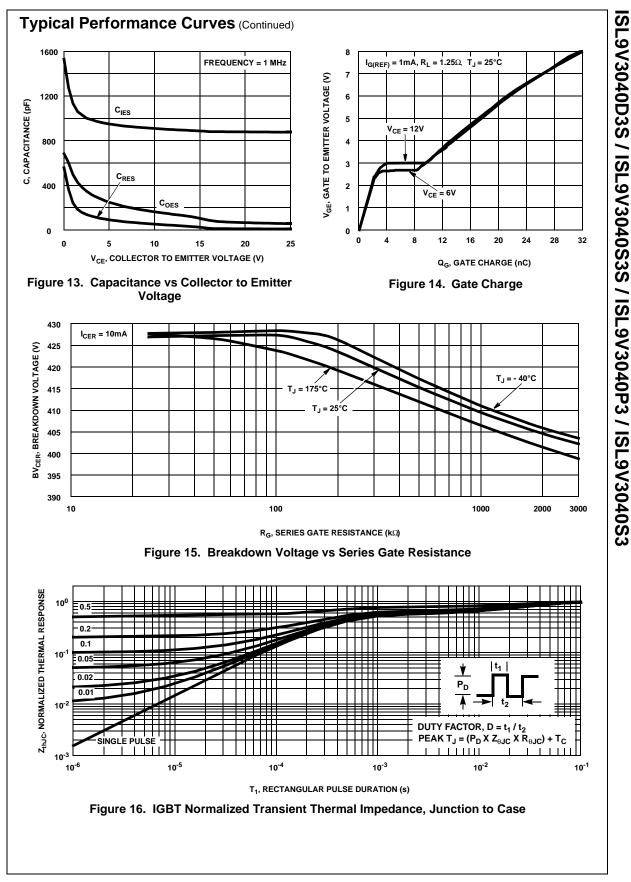

Symbol	Parameter	Ratings	Units	
BV _{CER}	BV _{CER} Collector to Emitter Breakdown Voltage (I _C = 1 mA)		V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25^{\circ}$ C, $I_{SCIS} = 14.2$ A, L = 3.0 mHy	300	mJ	
E _{SCIS150}			mJ	
I_{C25} Collector Current Continuous, At T_{C} = 25°C, See Fig 9		21	Α	
I_{C110} Collector Current Continuous, At $T_{C} = 110^{\circ}$ C, See Fig 9		17	Α	
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V	
PD	Power Dissipation Total $T_C = 25^{\circ}C$	150	W	
	Power Dissipation Derating $T_{C} > 25^{\circ}C$	1.0	W/°C	
TJ	Operating Junction Temperature Range	-40 to 175		
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
T _L Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)		300	°C	
T _{pkg} Max Lead Temp for Soldering (Package Body for 10s)		260	°C	
ESD Electrostatic Discharge Voltage at 100pF, 1500Ω		4	kV	

FAIRCHILD

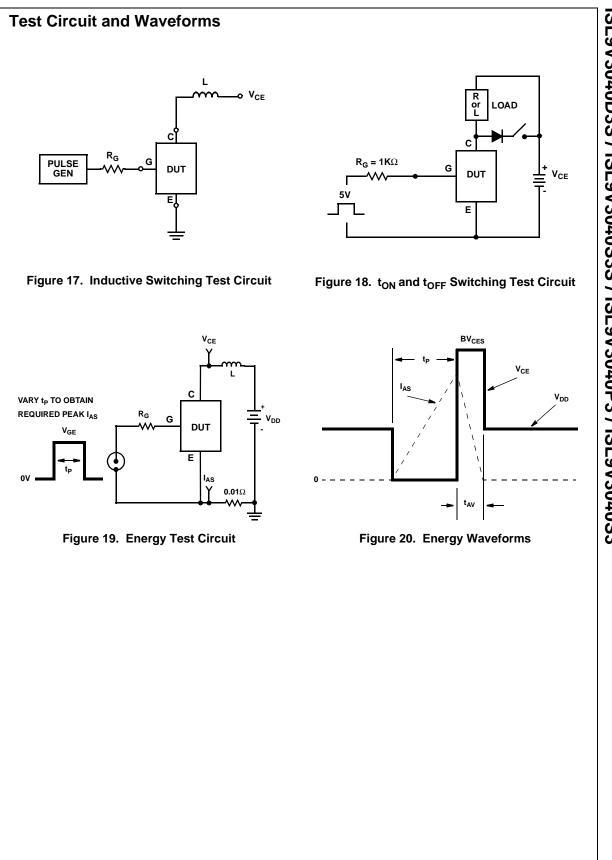

SEMICONDUCTOR®

Device M	arking	Device	P	Package	Reel Size	Таре	e Width	Qu	antity
V304	V3040D ISL9V3040D3ST T		T	O-252AA 330mm		16mm		2500	
		T	O-263AB 330mm		24mm		800		
V3040P ISL9V3040P3 T		O-220AA Tube		N/A		50			
		O-262AA Tube		N/A		50			
		O-252AA Tube		N/A		75			
V304		ISL9V3040S3S	1	D-263AB	Tube		N/A		50
		racteristics T _A = 25	5°C un			N 4:	True	Max	Unite
Symbol f State (Charact	Parameter		Test Cor	altions	Min	Тур	Max	Units
BV _{CER}	Characteristics Collector to Emitter Breakdown Voltage		$I_{C} = 2mA, V_{GE} = 0,$ $R_{G} = 1K\Omega$, See Fig. 15 $T_{J} = -40$ to 150°C		370	400	430	V	
BV _{CES}	Collector	Collector to Emitter Breakdown Voltage		$I_{C} = 10$ mA, $V_{GE} = 0$, $R_{G} = 0$, See Fig. 15 $T_{J} = -40$ to 150°C		390	420	450	V
BV _{ECS}	Emitter t	o Collector Breakdown Vo	ltage	$I_{C} = -75$ mA, $V_{GE} = 0$ V, $T_{C} = 25$ °C		30	-	-	V
BV _{GES}	Gate to	Emitter Breakdown Voltage	e	$I_{GES} = \pm 2mA$		±12	±14	-	V
I _{CER}	Collector	to Emitter Leakage Curre	ent	V _{CER} = 250V,	T _C = 25°C	-	-	25	μA
				R _G = 1KΩ, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter t	o Collector Leakage Curre	ent	$V_{EC} = 24V$, See		-	-	1	mA
				Fig. 11	T _C = 150°C	-	-	40	mA
R ₁		s Gate Resistance				-	70	-	Ω
R ₂	Gate to I	Emitter Resistance				10K	-	26K	Ω
n State (Charact	eristics							
CE(SAT)	Collector	lector to Emitter Saturation Voltage		I _C = 6A, V _{GE} = 4V	T _C = 25°C, See Fig. 3	-	1.25	1.60	V
CE(SAT)	Collector	lector to Emitter Saturation Voltage		I _C = 10A, V _{GE} = 4.5V	T _C = 150°C, See Fig. 4	-	1.58	1.80	V
CE(SAT)	Collector	ctor to Emitter Saturation Voltage		I _C = 15A, V _{GE} = 4.5V	T _C = 150°C	-	1.90	2.20	V
namic	Charact	eristics							
Q _{G(ON)}	Gate Ch	Gate Charge		I _C = 10A, V _{CE} = V _{GE} = 5V, See	= 12V, Fig. 14	-	17	-	nC
V _{GE(TH)}	Gate to	Emitter Threshold Voltage		I _C = 1.0mA,	$T_{C} = 25^{\circ}C$	1.3	-	2.2	V
				V _{CE} = V _{GE,} See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V_{GEP}	Gate to	Emitter Plateau Voltage		$I_{C} = 10A, V_{CE} =$	= 12V	-	3.0	-	V
vitching	Charao	cteristics							
t _{d(ON)R}	Current	Turn-On Delay Time-Resis	stive	$V_{CE} = 14V, R_L$		-	0.7	4	μs
t _{rR}	Current	Rise Time-Resistive		V _{GE} = 5V, R _G = T _J = 25°C, See	e Fig. 12	-	2.1	7	μs
t _{d(OFF)L}	Current	Turn-Off Delay Time-Induc	tive	V _{CE} = 300V, L		-	4.8	15	μs
t _{fL}		Fall Time-Inductive		V _{GE} = 5V, R _G = 1KΩ T _J = 25°C, See Fig. 12		-	2.8	15	μs
SCIS	Self Cla	nped Inductive Switching		$T_J = 25^{\circ}C, L = 3.0 \text{ mHy}, R_G = 1K\Omega, V_{GE} = 5V, See$ Fig. 1 & 2		-	-	300	mJ
ermal C	haracte	eristics							
$R_{\theta JC}$		Resistance Junction-Case	_	All packages		-	-	1.0	°C/W

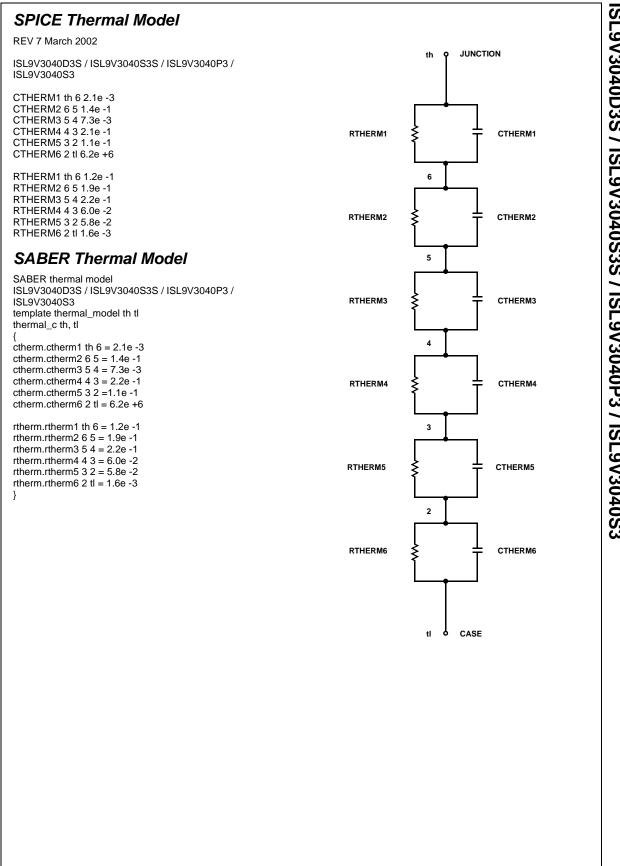
ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 Rev. D3, October 2004



©2004 Fairchild Semiconductor Corporation


©2004 Fairchild Semiconductor Corporation

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 Rev. D3, October 2004



©2004 Fairchild Semiconductor Corporation

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3 Rev. D3, October 2004

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic®
E ² CMOS [™]	I²C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Series [™]		OPTOLOGIC [®]	µSerDes™	UltraFET [®]
Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER [®] SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 113