ul. Konstantynowska 79/81
95-200 Pabianice, Poland
phone/fax 42 2152383,2270971
e-mail: fif@fif.com.pl

Frequency Inverter FA-1L/FA-3H

User Manual

v. 1.0.0

The notes concerning the relay's operational safety have been indicated with the following symbols. All information and recommendations labeled this way must be observed.

| Risk of electric Shock |
| :--- | :--- |
| Information concerning the structure, operation and service of the inverter |
| Potentially dangerous situation which may give rise to risks for operators or cause |

Table of Contents
Part 1. Inspection before and after unpacking 4
Inverter Specification Label 4
Model number convention 4
Part 2. Installation 5
Safety Precautions 5
Conditions for Use 6
Installation 6
Part 3. Wiring 7
Basic Connection Diagram 7
Main Circuit Terminals 7
Specification of MCCB, and electric cable 9
Control Circuit Terminals 9
Part 4. Operating Keyboard 12
Operating keyboard specification and function description 12
Example for parameters set 13
Menu Group 15
Monitor Function: SOO - S15. 15
Basic function Group:F00-F50 16
User Function Group:A00-A55 31
IO function group:000-068 40
Multi-speed PLC Group:H0O-H55 60
V/F Curve Group:U00-U15 68
PID parameter: POO-P12 68
Speed-loop parameter: C00-C31 71
Motor parameter: b00-b22 75
System parameter: y00-y17 77
Part 5 - Fault Diagnosis \& Solutions 80
Problems and solutions 80
Part 6 - Specification 82
Types table 87
Braking Unit 89

Part 1. Inspection before and after unpacking

1) Before unpacking the product, please check if its package is damaged due to careless transportation, and if the specifications and type of the product complies with the order.
2) Check the nameplate on the side of the frequency inverter to ensure that the product you have received is right the one you ordered.

Please contact the supplier of F\&F products if any problems are found.

Inverter Specification Label (nameplate)

Pic. 1) Inverter nameplate

Model number convention

Pic. 2) Identification of the type of inverter

Part 2. Installation

Safety Precautions

!	Never connect the A.C. power supply to the output terminals (U, V, W) of the frequency inverter.	
!	Fix and lock the panel before supplying power so as to avoid the danger caused by the poor capacity or other components inside the inverter.	Don't touch the circuit boards or its parts or components in the inverter when it is powered, so as to avoid danger of electric shock.
Af the power supply is switched off, do not touch the PCB or other parts inside the		
inverter within 5 minutes after the keyboard indicator lamp goes off, and you		
must check by using the instrument that the inverter has completely discharged		
all its capacity before you start to work inside the inverter. Otherwise, there will		
be the danger of electric shock.		

Conditions for Use

1. Ambient temperature $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$.
2. Avoid electromagnetic interference and keep the unit away from the interference source.
3. Prevent dropping water, steam, dust, powder, cotton fiber or fine metal powder from entering it.
4. Prevent oil, salt and corrosive gas from entering it.
5. Avoid vibration.
6. Avoid high temperature and moisture and avoid being wetted due to raining, with the humidity below 90\%RH (not dewing).
7. Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists.

Installation

The frequency inverter must be installed by wall hooking in the indoor room with adequate ventilation, with enough space left between it and the adjacent objects or damper (walls) surrounding it, as shown in the below figure:

Pic. 3) Example of appropriate building inverter

Part 3. Wiring

Basic Connection Diagram

Pic. 4) Inverter wiring diagram

Main Circuit Terminals

| $!$ | For wiring of main circuit, please refer to national rule. |
| :--- | :--- | :--- |
| inverter. | |

Pic. 5) Terminal block to connect the power circuit

Terminal	Function	Description
R/L1		Connected to 3-phase power, (Single input connected to R, T)
S/L2Power input for fre- quency inverter	Particular attention should be given to the differ- ence between the one-phase inverters 230V and 400V 3-phase. Connection of 3-phase 400V for 1- phase inverter can cause serious damage.	
		Connection point for braking resistance
B1, B2	Connect brake resistance	

U／T1	3 Phase Output	Connected to 3－phase motor
V／T2		
W／T3		
围／PE	Grounding point	Earthling terminal E or $\stackrel{\perp}{ \pm}$ must be grounded to the earth securely．

Specification of MCCB，and electric cable

Type	Input Current	Output Current	Motor Ca－ pacity	MCCB	Power Cable
	\mathbf{A}	\mathbf{A}	kW	\mathbf{A}	$\mathbf{m m}^{\mathbf{2}}$
FA－1L007	9	4	$\mathbf{0 . 7 5 k W}$	16	2,5
FA－1L015	17.5	7	$\mathbf{1 . 5 k W}$	25	2,5
FA－1L022	24	10	$\mathbf{2 . 2 k W}$	40	4,0
FA－1L040	36	16	$\mathbf{4 . 0 k W}$	63	6,0
FA－3H007	3.3	2.5	$\mathbf{0 . 7 5 k W}$	10	1,5
FA－3H015	5	3.7	$\mathbf{1 . 5 k W}$	10	1,5
FA－3H022	7 A	5 A	$\mathbf{2 . 2 k W}$	16	2,5
FA－3H040	11 A	8.5 A	$\mathbf{4 . 0 k W}$	25	2,5
FA－3H055	16.5 A	13 A	$\mathbf{5 . 5 k W}$	32	4,0
FA－3H075	20 A	16 A	$\mathbf{7 . 5 k W}$	40	4,0
FA－3H110	28 A	25 A	$\mathbf{1 1 k W}$	63	6,0

Control Circuit Terminals

4	Take special attention to the separation of the control circuit of the power circuit． Random combination of the two circuits may cause electric service and／or dam－ age to the drive．	4
1	Give attention to the maximum allowable voltage which may be applied to the inputs of the inverter control and maximum load controller outputs．Exceeding these values may damage the drive	！
良	For external control of frequency inverter，an isolation device should be used for the control lines or screened cable should be used．	
凮	A screened cable should be used as the signal connection line for input command and must be routed separately as well，and it had better be installed far from the main circuit	

TC1 TB1 COM SPA DI5 DI3 DIl COM PLC $+24 \mathrm{~V}+10 \mathrm{~V}$ GND

Pic. 6) The control circuit terminal block

	Terminal	Function	Description
	DI1	DI1 Input Terminal	Multi-functions input terminal.
	DI2	D2 Input Terminal	
	DI3	DI3 Input Terminal	For details Please read o36~046 Enter a valid polarity can be controlled by 047 DI1~DI4 Drive model can be controlled by JP4 DI5~DI6 Drive model can be controlled by PLC output terminal DI6 can be set as digital pulse input
	DI4	DI4 Input Terminal	
	DI5	DI5 Input Terminal	
	DI6	DI6 Input Terminal	
	PLC	PLC Control Terminal	PLC Control DI5-DI6 Drive model Drain Drive : PLCconnect 24VDC or external lower Source Drive: PLC connect COM
	COM	Common terminal	1The biggest output $\mathbf{2 4 V} / \mathbf{2 0 0 m A}$. Cannot connect COM with GND in any situ- ation
	+10V, GND	Analog Power	The biggest output $+10 \mathrm{~V} / 50 \mathrm{~mA}$. Cannot connect COM with GND in any situation

	Al1	Multifunction Analog Input Signal 1	```JP5 cut/JP3 1-2: -10V~+10V JP5 cut/JP3 2-3: 0~10V JP5 connect: \(0 \sim 20 \mathrm{~mA}\) can be regulated o00/o01 Set the input voltage / current range o06/o07 Set the input signal corresponding to set value```
	Al2	Multifunction Analog Input Signal 2	```JP6 cut: 0~10V JP6 connect: 0~20mA can be regulated 002/o03 can set input voltage/ current arrange 008/009 set the input signal corresponding to set value```
	AI3	Multifunction Analog Input Signal 3	JP7 cut: 0~10V JP7 connect: $0 \sim 20 \mathrm{~mA}$ can be regulated 004/o05 can set input voltage/ current arrange o10/o11 set the input signal corresponding to set value
$\begin{aligned} & \overline{0} \\ & \stackrel{0}{40} \\ & \hat{n} \\ & \stackrel{1}{3} \\ & \stackrel{\rightharpoonup}{7} \\ & 0 \end{aligned}$	SPA/COM	Output Signal 1	Open Collector signal when the output action (24VDC/50mA) Common terminal COM , the output function can set by 021, 022
	SPB/COM	Output Signal 2	SPA, SPB provide hi-speed pulse output fun - ction. After setting functions by 061~064 Frequency inverter will take effect again.
	TA1/TB1/TC1	Output Signal 3	Relay Output - max. 250VAC/5A or 24VDC/5A. TA1-TC1 open, TB1-TC1close, the output function can set by 023
	DA1	Multifunction Analog Output Signal 1	$\begin{aligned} & \text { JP1 1-2: } 0 \sim 20 \mathrm{~mA} \\ & \text { JP1 2-3: } 0^{\sim} 10 \mathrm{VDC} \end{aligned}$ o15 set analog output analog functions o17/o18 set the output signal arrange
	DA2	Multifunction Analog Output Signal 2	$\begin{aligned} & \text { JP2 1-2: 0~20mA } \\ & \text { JP2 2-3: } 0 \sim 10 \mathrm{VDC} \end{aligned}$ o16 Set analog output analog functions o19/o20 set the output signal arrange

Part 4. Operating Keyboard

Operating keyboard specification and function description

Pic. 7) An example of the use of the control panel

Example for parameters set

F01 keyboard set the frequency from 50.00 Hz to 25.00 Hz ．

Pic．8）An example of a parameter edition

1．Under monitoring status，press into parameter group to query status；
2．Through potentiometer Switch to FOO－63 Basic FG；
3．Press ，or ENTER，enter into FOO－63 Basic FG parameter group to query status；
4．Through potentiometer Switch to FO1Fre．Set by K；
5．Press or ENTER，enter into F01 Fre．Set by k parameter modify status；
6．Through $\begin{aligned} & \text { 閣 }\end{aligned}$ ，or ENTER，adjust the value is modified bit；
7．Through potentiometerHas been modified to adjust the bit values；
8．Finish the adjustment，press $\sqrt{\frac{\operatorname{sst}}{\gg}}$ ；if cancel the change，press ${ }^{\sqrt{\text { Esc }}}$ ．to escape to the modify status；
9．Press ${ }^{\boxed{\text { EsC }}}$ to exit to previous menu．

Parameter uploads to the keyboard

Parameter Item	Description	
y01 parameter upload to	N function	0

the keyboard	System parameter upload to the memory area1 in the keyboard	1
	System parameter upload to the memory area2 in the keyboard	2
	System parameter upload to the memory area3 in the keyboard	3
	System parameter upload to the memory area4 in the keyboard	4
	Clear memory area in the keyboard1，2，3，4	5

1．Example．System parameter upload to the memory area3 in the keyboard
1．Under monitoring status，press $\stackrel{\text { 醕 }}{ }$ into parameter group to check status；
2．Through potentiometer Switch to y00－23 System FG；

4．Through potentiometer Switch to y01P Upload To K；
5．Press $\sqrt{\text { 面禺 }}$ ，or ENTER，enter into y01P Upload To K parameter modify status；
6．Through potentiometer adjust value to be 3 ；
7. Finish the adjustment, press $\sqrt{\frac{\text { ser }}{\gg}}$;the speed for upload will display on the LED;if cancel the change, press ${ }^{\sqrt{E S C}}$ to escape to the modification status;
8. Press $\sqrt{\text { Esc }}$ to exit to previous menu.

Parameters Groups

Code	Function	Description	Refer to page
S	Monitor Function Group	Monitor frequency, current and other 16 monitor objects	Błąd! Nie zdefiniowano zakładki.
F	Basic Function Group	Frequency setting, control mode, acceleration time and deceleration time	16
A	User Function Group	Monitor, protection, communication setting	30
O	IO Function Group	Analog, digital input, output function	Błąd! Nie zdefiniowano zakładki.
H	Multi-speed Group	Multi-speed running, PLC running	Błąd! Nie zdefiniowano zakładki.
U V/F parameter Group	User defined V/F curve	Błąd! Nie zdefiniowano zakładki.	
P	PID Function Group	Internal PID parameter setting	Błąd! Nie zdefiniowano zakładki.
C	Speed ring function Group	Current ring, speed running, PG parameter	Błąd! Nie zdefiniowano zakładki.
b	Motor parameter Group	Motor parameter setting	74
y	System Function Group	Parameter reset, fault query, product information, parameter protection	77

Monitor Function: S00-S15

Code	Function	Description	Unit	Fact.	Change Limited
$\mathbf{S 0 0}$	Setting quency	Current inverter real setting frequency	Hz	-	N
$\mathbf{S 0 1}$	Real Frequency	Current inverter real output frequency	Hz	-	N
$\mathbf{S 0 2}$	Motor real Cur- rent	Valid value of motor actual current	A	-	N
$\mathbf{S 0 3}$	Percentage of Motor Current	The percentage of actual motor current and rated current	$\%$		
$\mathbf{S 0 4}$	DC Bus Voltage	Detection value of DC bus voltage	V	-	N
$\mathbf{S 0 5}$	The Output Voltage	The real output voltage	V	-	N

S06	Motor Speed	Real	Motor real running speed	$\mathrm{obr} / \mathrm{min}$	-

Under running, the real speed of the motor $=60 *$ the real output frequency *Gain Speed surveillance /pole of the motor.
Example: the real output frequency 50.00 Hz , Gain Speed surveillance $\mathbf{A 3 5}=100.0 \%$, the pole of the motor $\mathbf{b 0 3} / \mathbf{b 1 6}=2$, the real speed of the motor $=1500 \mathrm{rpm}$.
When stop, based Residual voltage test motor speed, renew speed 500 ms .
The real speed $=60 *$ residual frequency*Gain Speed surveillance / the pole of the motor
Max display of motor real speed 9999rpm.

| S07 | Total
 Time | hour/
 day | - | N |
| :---: | :---: | :---: | :---: | :---: | :---: |

When the output, the frequency inverter calculated the running time.
Total running time can be cleared up automatically with A33 selecting reboot or continue accumu lation after reboot
Total running time of the units can be changed by parameter A34, you can choose hours or days as the unit

S08	IGBT Tempera- ture ${ }^{\circ} \mathrm{C}$	Test the temperature of IGBT in the frequency	${ }^{\circ} \mathrm{C}$	-	N
S09	PID Set Point	PID Adjust run-time values of the percentage of a given	$\%$	-	N
S10	PID Feedback	PID Adjust run-time values of the percentage of feed back	$\%$	-	N
$\mathbf{S 1 1}$	Motor Output Frequency	The percentage of actual output power of motor	$\%$	-	N

The output frequency of the motor=the actual frequency of the motor *A36 the regulate of the motor frequency
Max display of the output frequency 2999.9

$\mathbf{S 1 2}$	Excitation Heft Set Value	Motor's set excitation heft percentage	$\%$	-	N
$\mathbf{S 1 3}$	Excitation Heft Actual Value	Motor's actual excitation heft percentage	$\%$	-	N
$\mathbf{S 1 4}$	Torque Heft Set Value	Motor set torque percentage	$\%$	-	N
$\mathbf{S 1 5}$	Torque Heft Actual Value	Motor actual torque hefts percentage	$\%$	-	N

Basic function Group:F00-F50

Code	Function	Setting Range	Unit	Fact.	Change Limited	
F00	Control Mode	V/F control	0		0	N
		Sensor less vector control	1			

0. V/F Control

It is not sensitive to motor parameters, can be used as power supply; for motor control, using the combination of vector control and V / F control strategies, appropriately adjusts motor parameters, obtain high-performance control effect; suitable for a inverter driving a motor occasions; suitable for a inverter driving multiple motors occasions; suitable for the inverter as a variable frequency power supplies.

1. Sensor less vector control

High-performance speed sensor less vector control; need to set the appropriate electrical parameters or the motor parameter tuning; truly achieved the decoupled AC motor, so that operational control of DC

motors.						
F01	Keyboard Setting Fre- quency	Lower frequency~upper frequency	Hz	50	$\mathrm{Y} \quad$	
:---:						

The keyboard for a given operating frequency, it can be any frequency between lower frequency and upper frequency.
F02/F03setting to 0 , involved in setting frequency calculation.

F02	Frequency Main Set Mode	Keyboard setting frequency or RS485	0	0	Y
		Al1 the external analog setting	1		
		Al2 the external analog setting	2		
		Al3 the external analog setting	3		
		Keyboard potentiometer setting	4		
		Multi-segment digital voltage setting	5		
		Digital Pulse Setting	6		

The main mode of the frequency running frequency:

0 : keyboard setting frequency or RS485 change F01 keyboard setting frequency

Multi-digital voltage terminal effective exchange, change FO1keyboard setting value

1 : Al1 the external analog setting

Given the external analog $0 \sim 10 \mathrm{~V},-10 \mathrm{~V} \sim+10 \mathrm{~V}, 0 \sim 20 \mathrm{~mA}$. For detail please read the o group parameter.

2 : Al2 the external analog setting

3 : Al3 the external analog setting
Given the external analog $0 \sim 10 \mathrm{~V}, 0^{\sim} 20 \mathrm{~mA}$. For detail please read the o group parameter.
4 : Keyboard potentiometer setting
Keyboard potentiometer setting, keyboard potentiometer for a given start and end values of the corresponding values can be positive role and negative effects. For detail please read the \mathbf{A} group parameter.

5 : Multi-segment digital voltage setting
036~046 IO input terminal function set to 11, 12, 13, switch H47~H54 Multi-digital voltage setting, 100\% corresponding to the maximum frequency.

6 : Digital pulse setting

Digital pulse input frequency Corresponding to the setting frequency. For detail please read the $\mathbf{0 5 2}$ group parameter.
Pulse input terminal and DI8 terminal reset, after using the digital pulse input, o43 set to 0. Otherwise, the function settings will take effect, the pulse input on status of 058 can be checked, be limited to low-speed pulse.
Through 036~046 IO input terminal set to 14, 15, 16 be configured to switch the source

F03	Auxiliary Setting Mode Of Frequency	Keyboard setting frequency or RS485	0		
		Al1 the external analog setting	1		
		Al2 the external analog setting	2		
		Al3 the external analog setting	3		
		Keyboard potentiometer setting	4		
		Multi-segment digital voltage setting	5		
		Digital Pulse Set	6		
		PID regulation mode	7		
Auxiliary setting mode of frequency set:					
0 : keyboard setting frequency or RS485 change F01 keyboard setting frequency					
Multi-digital voltage terminal effective exchange, change FO1keyboard setting value					

Given the external analog $0^{\sim} 10 \mathrm{~V},-10 \mathrm{~V} \sim+10 \mathrm{~V}, 0^{\sim} 20 \mathrm{~mA}$. For detail please read the o group parameter.

2 : Al2 the external analog setting

3 : Al3 the external analog setting
Given the external analog $0 \sim 10 \mathrm{~V}, 0 \sim 20 \mathrm{~mA}$. For detail please read the \mathbf{o} group parameter.

4 : Keyboard potentiometer setting
Keyboard potentiometer setting, keyboard potentiometer for a given start and end values of the corresponding values can be positive role and negative effects. For detail please read the \mathbf{A} group parameter.

5 : Multi-segment digital voltage setting

o36~046 IO input terminal function set to 11, 12, 13, switch H47~H54 Multi-digital voltage setting, 100\% corresponding to the maximum frequency.

6 : Digital pulse setting

Digital pulse input frequency Corresponding to the setting frequency. For detail please read the $\mathbf{0 5 2}$ group parameter.
Pulse input terminal and DI8 terminal reset, after using the digital pulse input, $\mathbf{0} 43$ set to 0 . Otherwise, the function settings will take effect, the pulse input on status of o58 can be checked, be limited to low-speed pulse.
Through o36~046 IO input terminal set to $14,15,16$ be configured to switch the source.

7 : PID regulation mode

The completion of the main to the frequency of common analog feedback loop control. Speed control accuracy requirements applicable to the general occasions. The given value can be given through the keyboard can also be given through the analog. Analog feedback can represent the pressure, flow, temperature. Details see the \mathbf{P} group of parameters. The completion of the main to the frequency of common analog feedback loop control. Speed control accuracy requirements applicable to the general occasions. For a given value can be given through the keyboard can also be given through the analog. Analog feedback can represent the pressure, flow, temperature. Details see the \mathbf{P} group of parameters. Through $\mathbf{0 3 6}{ }^{\sim} \mathbf{0} \mathbf{0} 6$ IO input terminal, set to $17,18,19$ be configured to switch the source for a given ratio.

F04	The Relationship Between Main And Auxiliary Setting Frequency	The main setting individual control	0	-	0	T
		The auxiliary setting individual control	1			
		main + auxiliary	2			
		main -auxiliary	3			
		(main *auxiliary)/maximum frequency	4			
		Maximum \{main, auxiliary\}	5			
		Minimum \{main, auxiliary\}	6			

Main given and auxiliary given set frequency relations:
Main given value and auxiliary given value can be added up, subtracted, multiplied, maximum, minimum calculation.
O group parameters can be adjusted to coordinate the main given and auxiliary given proportion, to meet the requirements of the system fine-tuning and bias.

The relationship between main give and auxiliary given

Stop and running command control mode :
0) Keyboard+RS485 Control

1) Keyboard+Terminal+RS485 Control

Control terminal, edge trigger, falling edge of the implementation of the Forward command FWD / Reverse command REV, rising edge of the implementation of the STOP command.

2) RS485

Under this function, only free stop function is valid under the keyboard control, other operation control is invalid.

3) Terminal control, Level trigger

Under this function, only free stop function is valid under the keyboard control, other operation control is invalid.
4) The proportion linkage control

Select this function; the slave unit would execute the command from the proportion linkage host unit.
Select this function can also use keyboard, terminal, RS485 to control the proportion linkage slave unit to run.
The proportion of linkage running, after stop the proportion linkage slave unit with the keyboard terminal, RS485, the slave unit will not run the proportion linkage host unit's command, it needs once again to respond to host commands through the keyboard, terminal, RS485, or the proportion linkage host sends stop command so that slave unit could respond to run commands.

F06	V/F Boost Mode	1 bit	Beeline V/Fcurve	0	-	000	N
			Power of 1.2 V/Fcurve	1			
			Power of 1.7 power V/Fcurve	2			
			Power of 2 powerV/Fcurve	3			
			Define mode V/Fcurve	4			
		10 bit	Close Automatic torque boost				

1 Bit: V/F promote curve

0) Line V/F curve: Suitable for ordinary constant torque load
1) Power of $1.2 \mathrm{~V} / \mathrm{F}$ curve: Appropriate torque down V/F curve - suitable for liquid loads.
2) Power of $1.7 \mathrm{~V} / \mathrm{F}$ curve: Appropriate torque down V/F curve - suitable for liquid loads.
3) Power of 2 V/F curve: Torque down V/F curve - it is suitable for fans, pumps, centrifugal load.
4) Define mode V/Fcurve: Can be customized appropriate curve according to the actual situation.

10 bit: Auto-torque boost mode
0) Close Automatic torque boost

1) Open automatic torque boost

Parameters which affect automatic torque enhance :

- Actual value torque component S15
- b06/b19 stator resistance
- F07 torque enhance value

Automatic torque enhance value $=$ actual value of torque component * stator resistance *torque enhance value.

100 bit: VF mode 0 speed maintain function
0) VF mode 0 Speed No Output: Output frequency is less than 0.5 Hz , stop PWM output to reduce the switching loss.

1) VF mode keep 0 speeds: Output frequency is 0 Hz , in accordance with the DC braking current of starting F26, keep 0 speeds.

F07	Torque boost Value	$0.0-30.0$	$\%$	0.0	Y
F08	Torque Boost Cut-off Frequency	0.00^{\sim} Maximum frequency	Hz	15.0	Y

Torque increase is mainly used to improve the low-frequency torque characteristics under sensor less V / F control mode:

Torque boost is too low, weak low speed motor
Torque boost is too high, motor over-excitation operation, large inverter output current and low efficiency. The setting frequency of the inverter is lower than the frequency of the torque rising, the torque rising will be valid; over than the setting frequency the torque rising will invalid.

| F09 | Accelerate Time | $0.0-3200.0$ |
| :--- | :---: | :---: | :---: |
| F10 | Decelerate Time | $0.0-3200.0$ |
| F09 - Accelerate time: accelerate time from OHz to maximum frequency. | | |
| F10 - Decelerate time: decelerate time from maximum frequency to 0 Hz | | |

Attention：Too short acceleration／deceleration slows the motor windings and inverter circuitry and may cause tripping over current and overvoltage protection built－in inverter

| F11 | Percentage Of Output
 Voltage | $50-110$ | $\%$ | 100 |
| :---: | :---: | :---: | :---: | :---: | Y

The percentage of the actual output voltage and the rated output voltage．
Used to adjust the output voltage，output voltage＝inverter rated output voltage＊percentage of output voltage．

F12	Maximum Frequency	$10.00-320.00$	Hz	50.00	N

Inverter output maximum frequency allowed is also the setting basis of acceleration／deceleration time．
This parameter setting，you should consider characteristics of the motor speed and capacity．

F13	Lower Frequency	$0.00 ~$ Upper frequency	Hz	0.00	N
F14	Upper Frequency	Lower frequency $^{\sim}$ Upper frequency	Hz	50.00	N

F13 Lower frequency：the lower limit of the output frequency．
F14 Upper frequency：the upper limit of output frequency．
When the frequency setting command is higher than the upper frequency，the operating frequency will be the upper frequency；When the frequency setting command below the lower frequency，the operating frequency is lower frequency．Start the motor that in the status of stopping，the inverter outputs accelerate starting from 0 Hz ，accordance with the step 1 acceleration time towards the upper or the setting frequency to accelerate．When motor Stop，the operating frequency decelerate according to deceleration time down to OHz ．

F15	Basic Frequency	5．00～Maximum frequency	Hz	50.00	N

Corresponding to different fundamental frequency of the motor select this function．The basic V／F characteristic curve is as below．

F16	Carrier Frequency	$1.0-16.0$	KHz	8	Y

This function is chiefly used to improve the possible noise and vibration during the operation of frequency converter. When carrier frequency is higher, the output current has better wave, the torque is great at lower frequency and the motor produces light noise. So it is very suitable for use in the applications where great torque is output at low frequency quietly. But in these applications, the damage to the switches of main components and the heat generated by the inverter are great, the efficiency is decreased and the output capacity is reduced. At the same time, more serious radio interference is resulted and special attention must be paid for application where very low EMI is needed, and filter option can be used if necessary. Another problem for application of high carrier frequency is the increase of capacitance-leakage current. The protector for leakage current may invalidate function, and over current is also possibly caused. When low carrier frequency is applied, the case is almost contrary to the above-mentioned one. Different motor has different reflection to the carrier frequency. The best carrier frequency is gained after regulation according to actual conditions. The higher the motor capacity is, the lower the carrier frequency should be selected.

The company reserves the right to limit maximum carrier frequency as following:
The relation between carrier frequency and Motor Noise, Electric disturbance, Switch dissipation is expressed as following:

F17 Carrier frequency adjustment range

$0.0^{\sim} 4.0 \mathrm{kHz}$, Actual Carrier frequency adjustment range $1.0^{\sim} 16.0 \mathrm{kHz}$
F18 Carrier frequency adjustment mode
1 Bit: Carrier frequency automatic adjustment mode
0) No automatic adjustment - carrier frequency according F16 to set.

1) Automatic adjustment mode - The carrier frequency automatically adjusts the model 10 can select random mode and fixed pattern.
10 Bit: Stochastic adjustment mode
2) automatic adjustment - fixed mode:

Load current>80\% Carrier frequency = F16-F17
Load current<60\% Carrier frequency = F16 + F17

1) automatic adjustment, random mode

Load current >80\% Carrier frequency $=($ F16 - F17 $) ~ \sim ~ F 16 ~$
Load current $<60 \%$ Carrier frequency $=$ F16 ~ (F16 + F17)

F19	Waveform Generation Mode	Asynchronous space-vector PWM	0	-	0	N
		Steeples \& subsection synchronous space vector PWM	1			
		two-phase optimization space vector PWM	2			
F20	S Curve Start Time At The Acceleration Step	0.0~50.0	$\begin{aligned} & 0.0- \\ & 50.0 \end{aligned}$	\%	0.0	T
F21	S Curve Stop Time At	0.0~50.0	0.0 -	\%	0.0	T

domestic and industrial automation

	The Acceleration Atep		50.0			
F22	S Curve Start Time At The Deceleration Step	$0.0^{\sim} 50.0$	$0.0-$ 50.0	$\%$	0.0	T
	S Curve Stop Time At The Deceleration Step	$0.0^{\sim} 50.0$	$0.0-$ 50.0	$\%$	0.0	T

Such as setting the S curve acceleration and deceleration, acceleration and deceleration time from 0 Hz to the maximum frequency is calculated as follows:

Plus acceleration S characteristic time = F09 * F20
Constant extra acceleration S characteristic time $=\mathbf{F 0 9}-(\mathbf{F 0 9} * \mathbf{F 2 0}+\mathbf{F 0 9} * \mathbf{F 2 1})$
Minus acceleration S characteristic time = F09 * F21
Full acceleration time $=\mathbf{F 0 9}$ Acceleration time

Velocity S addition and subtraction characteristic time $=\mathbf{F 1 0} * \mathbf{F 2 2}$
Constant deceleration S characteristics time $=\mathbf{F 1 0}-\left(\mathbf{F 1 0}{ }^{*} \mathbf{F 2 2}+\mathbf{F 1 0}{ }^{*} \mathbf{F 2 3}\right)$
And reduction rate of S characteristic time $=\mathbf{F 1 0} *$ F23
All deceleration time $=\mathbf{F 1 0}$ deceleration time

F24

V/F Control Slip Com-
pensation

slip compensation invalid
slip compensation valid

0

Valid only under V/F control mode.
0) Slip compensation function is invalid.

1) Slip compensation function is valid.

Slip compensation value adjusted by the following parameters to ensure stable speed under load fluctuations and heavy load:

C09 Low Slip Gain
C10 Low Slip switching frequency
C11 High-Speed Slip Gain
Slip C12 high-speed switching frequency

F25	Minimum Running Frequency	0.00^{\sim} maximum frequency	Hz	0.00	N

The set frequency lower than the minimum running frequency, the converter will stop, that is, when the set frequency is less than the minimum running frequency, are determined that the set frequency is 0 .

F26	DC Braking Current When Starting	$0-135$	$\%$	100	Y
F27	Braking Time When Starting	$0.0-60.0$	s	0.0	Y

When frequency Inverter starting, the first injection of DC current, the current size is determined by starting to set when the DC braking current and braking time, braking time from the start to set.
Value is based on inverter rated current as the benchmark that is inverter rated current corresponds to 100%. During setting process, be sure to gradually increase, until adequate braking torque, and cannot exceed the motor rated current.

F28	Stop When The DC Braking Current	$0-135$	$\%$	100	Y
F29	Stop And Braking Wait Time	$0.0-60.0$	s	0.0	Y
F30	Brake Time Stop	$0.0-60.0$	s	0.0	Y
F31	Stop And Brake Start- ing Frequency	$0.00 \sim$ maximum frequency	Hz	0.00	T

Inverter slowing down to stop braking start frequency, stop the output PWM waveform to begin injection of DC current, the current size by the shutdown of DC braking current setting, braking time, braking time set by the downtime. Value is based on inverter rated current as the benchmark that is inverter rated current corresponds to 100%. Setting process is sure to gradually increase from a small, until adequate braking torque, and cannot exceed the motor rated current.

F32

Stop Setting Mode

Deceleration stop	0	-	0	N
	1			

When the frequency inverter receives the "stop" command, it will set the parameters accordingly to this parameter to set the motor stop mode:
0) Deceleration to stop

Mode converter according to parameters set by the deceleration time to set the deceleration mode to slow down to the lowest frequencies to stop.

1) Free stop mode

Inverter receives "stop" command immediately stop output, according to the load inertia, motor free-run to stop.

F33	Jog Acceleration Time	$0.0-3200.0$					

Jog acceleration/deceleration time configuration defines the same section of acceleration/deceleration time.
The direction of jog is set by the unit bit of F35, when the Jog command does not contain the direction of jog, the direction of job will run as to the unit bit designated by F35. It is set to 2 , the direction of jog is run by the terminal or current direction.
The running status after jogging is identified by F35.

Whether jog acceleration/deceleration time is maintained through the confirmation on hundred bit of F35 after jogging

F37	Skip Frequency 1 Limit	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F38	Skip Frequency 1 Up- per	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F39	Skip Frequency 2 Limit	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F40	Skip Frequency 2 Up- per	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F41	Skip Frequency 3 Limit	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F42	Skip Frequency 3 Up- per	$0.00 \sim$ Maximum frequency	Hz	0.00	Y

During running, to skip resonance produced by the immanent resonance point in the machine systems, skip mode can do this.
At most three resonance points could be set to skip.

Upper skip frequency and lower skip frequency define skip frequency range. In the acceleration and deceleration process, inverter output frequency can normally through skip frequency area.

F43	Preset Frequency	$0.00 \sim$ Maximum frequency	Hz	0.00	Y
F44	Preset Frequency Working Time	$0.0-60.0 \mathrm{~s}$	s	0.0	Y

After inverter startup, it firstly run with preset frequency, running time is preset frequency time, and then it will run with given frequency. Jog run will not be effective by preset frequency.

	Motor Running Direction	$\begin{gathered} 1 \mathrm{bit} \\ 10 \mathrm{bit} \end{gathered}$	Direction command		100	
					N	
			Forward command FWD let motor forward running	0		
			Forward command FWD let motor reverse running	1		
			Command prior			
F45			terminal/keyboard	0		
		100 bit	Analog given positive and negative values	1		
		1 bit	Reverse allow			
			reverse forbidden	0		
			reverse allow	1		

1 Bit: Change the direction of motor running

0) Forward command FWD is to let motor forward running.
1) Forward command FWD is to let motor reverse running.

10 Bit : Motor forward reverse running
Motor forward reverse running can be controlled by the keyboard potentiometer and analog input positive or negative value
0) Prior command: terminal / keyboard, set frequency can be negative value, but running direction decided
by terminal and keyboard command.

1) Prior command: positive or negative value of analog input, setting frequency positive value let motor forward running, setting negative value let motor reverse running.
100 Bit: motor reverse allow.
For some producing equipment, the reverse may lead to damage to the equipment, so this feature can be used to prevent motor reverse, Inverter default forbidden reverse. When the motor running direction opposes to equipment required direction, you can exchange the wiring of any two inverter output terminals to let equipment forward running direction is consistent with motor running.
2) Reverse forbidden
3) Reverse allow

F46 \quad Pass 0 Stopping Time $0.0-60.0$
Setting this parameter to achieve the motor forward to reverse (or from reverse running to forward), the waiting time of motor speed being zero.

F47
Frequency Multiple

Maximum frequency: $10.00-320.00 \mathrm{~Hz}$	0
Maximum frequency: $100.0-800 \mathrm{~Hz}$	1

-

0) Set frequency display accuracy 0.01 Hz

With this accuracy, F12 Maximum frequency setting range $10.00 \sim 320.00 \mathrm{~Hz}$.

1) Set frequency display accuracy 0.1 Hz

With this accuracy, F12 Maximum frequency setting range $100.0^{\sim} 800.0 \mathrm{~Hz}$.

After setting this parameter, there must be reset F12 maximum frequency.

1 bit - Acceleration time adjustment mode

0	No Adjustment Of Acceleration Time	No adjustment
1	Al1 Adjustment Of The External Analog Giving	Actual Acc. time=Acc. time*AI1 giving percentage
2	Al2 Adjustment Of The External Analog Giving	Actual Acc. time = Acc. time*AI2 giving percentage
3	Al3 Adjustment Of The External Analog Giving	Actual Acc. time = Acc. time*AI3 giving percentage
4	Adjustment Of Keyboard Poten- tiometer Giving	Actual Acc.time = Acc. time*keyboard potentiometer giving per- centage
5	Adjustment Of Multi Steps Digi-- tal Voltage Giving	Actual Acc.time=Acc.time*Multi steps digital voltage giving per- centage

10 bit - Deceleration time adjustment mode

0	No Adjustment Of Acceleration Time	No adjustment
1	Al1 Adjustment Of The External Analog Giving	Actual Decc. Time = Decc. time*AI1 giving percentage
2	Al2 Adjustment Of The External Analog Giving	Actual Decc. time = Decc. time*Al2 giving percentage
3	Al3 Adjustment Of The External Analog Giving	Actual Decc. time = Decc. time*Al3 giving percentage
4	Adjustment Of Keyboard Poten- tiometer Giving	Actual Decc. time = Decc. time*keyboard potentiometer giving percentage
5	Adjustment Of Multi Steps Digi- tal Voltage Giving	Actual Decc. time= Decc. time*Multi steps digital voltage giving percentage

100 bit - Acceleration time unit

0	${ }^{*}$ s	Max. acceleration time F09 $=3200.0 \mathrm{~s}$
1	${ }^{*} \min$	Max. acceleration time F09 $=3200.0$ min.
2	${ }^{*}$ hour	Max. acceleration time F09 $=3200.0$ hours.
3	${ }^{*}$ day	Max. acceleration time F09 $=3200.0$ days

1000 bit - Decceleration time unit

0	${ }^{*} \mathrm{~s}$	Max. decceleration time F10 $=3200.0 \mathrm{~s}$
1	${ }^{*} \mathrm{~min}$	Max. decceleration time F10 $=3200.0 \mathrm{~min}$.

domestic and industrial automation

2	$*$ hour	Max. decceleration time F10 $=3200.0$ hours.
3	${ }^{*}$ day	Max. decceleration time $\mathbf{F 1 0}=3200.0$ days

F49	Running Configuration Word	1 bit	Running direction		00	N
			Forward	0		
			Reverse	1		
		10 bit	Running time (H18-H25)			
			Sec	0		
			Min	1		
			Hours	2		
			Day	3		

Unit adjustment of actual running time. It is only valid on program running.
1 bit: Program running on multi-speed running period
Set bit to running direction of " 0 " step speed

0	Forward
1	Reverse

When running control mode $\mathrm{F} 05=0 / 1 / 2$, control direction of " 0 " step speed.
When running control mode $F 05=3$, Setting the value and terminal FWD / REV jointly decide the direction of 0 step speed, FWD priority.

	FWD=1 running direction	REV=1 running direction
0	FWD	REV
1	REV	FWD

10 bit: unit of time running when on " 0 " step speed.

0	${ }^{*}$ sec	$\mathbf{H 1 8 - H 2 5 ~}->0.0-3200.0 \mathrm{~s}$
1	${ }^{*}$ min	$\mathbf{H} 18-\mathrm{H} 25->0.0-3200.0 \mathrm{~m}$
2	${ }^{*}$ hour	$\mathbf{H} 18-\mathrm{H} 25->0.0-3200.0 \mathrm{~h}$
3	${ }^{*}$ day	$\mathbf{H} 18-\mathrm{H} 25->0.0-3200.0 \mathrm{~d}$

| F50 | Energy Saving Running
 Percentage | $30-100$ | $\%$ | 100 |
| :---: | :---: | :---: | :---: | :---: | N

This parameter describes the minimum output voltage percentage of energy-saving operation. In the constant speed operation, the inverter can be automatically calculated the best output voltage by the load conditions. In the process of acceleration and deceleration is not to make such calculations.
Power-saving function is by lowering the output voltage and improve power factor to achieve the purpose of saving energy, this parameter determines the minimum value of reducing of output voltage; This parameter is set to 100%, then energy-saving function will take off.
When energy-saving function in effect, Actual output voltage value of inverter= The inverter rated output voltage*The percentage of output voltage*output voltage percentage of energy saving operation.
output voltatge (V)

User Function Group: A00-A55

Code	Description / LCD	Setting Range		Unit	Factory Setting	Change Limited
A00	Monitor 1 Monitor 2 Monitor 3	Parameter group	Parameter number	-	OB00	T
A01		XX--	--xx	-	OB01	T
A02		$00-0 \mathrm{~B}$	00-63 (0x00-0x3F)	-	OB02	T

A00/A01/A02 parameter specifies that the inverter parameters will be displayed on the display monitor 1 - Unit 3 located on the control panel inverter. The first two digits identify the parameter group of parameters, and the last two - the number of displayed parameter.

Group	Function	Spec	Number
$\mathbf{O B}$	Monitor Function Group	S	$0-16(0 \times 00-0 \times 10)$
$\mathbf{0 0}$	Basic Function Group	F	$0-60(0 \times 00-0 \times 3 \mathrm{C})$
$\mathbf{0 1}$	User Function Group	A	$0-56(0 \times 00-0 \times 38)$
$\mathbf{0 2}$	IO Function Group	o	$0-61(0 \times 00-0 \times 3 \mathrm{D})$
$\mathbf{0 3}$	Multi-step Speed PLC Group	H	$0-56(0 \times 038)$
$\mathbf{0 4}$	V/F Curve Group	U	$0-16(0 \times 00-0 \times 10)$
$\mathbf{0 5}$	PID Function Group	P	$0-13(0 \times 00-0 \times 0 \mathrm{D})$
$\mathbf{0 6}$	Extend Function Group	E	$0-14(0 \times 00-0 \times 0 \mathrm{E})$
$\mathbf{0 7}$	Speed Loop Parameter Group	C	$0-32(0 \times 00-0 \times 21)$
$\mathbf{0 8}$	Motor Parameter Group	b	$0-23(0 \times 00-0 \times 17)$
$\mathbf{0 9}$	System Function Group	y	$0-18(0 \times 00-0 \times 12)$

That parameter Number should be 16 hex input.
Monitor1 will be valid when first power on, and which decide keyboard display content. Such as:
Monitor 1: S01 actual frequency, $\mathbf{A 0 0}=0 \times 0 \mathrm{~B} 01$.
Monitor 2: 057 DI1~4 terminal status, A01=0x0239.
Monitor 3: H55 multi-steps speed status, A02=0x0337.

A03	Over /Less Voltage Stall Protection	Off	0	-	1	Y
		On	1			
A04	Overvoltage Stall Protection Voltage			\%	120	Y

When the inverter deceleration, as the motor load inertia, motor will produce feedback voltage to inverter inside, which will increase DC bus voltage and surpass max voltage. When you choose Over /less voltage stall protection and it is valid, Inverter detects DC side voltage, if the voltage is too high, the inverter to stop deceleration (the output frequency remains unchanged), until the DC side voltage is below the set value, the inverter will reimplement the deceleration
With braking models and external braking resistor, this function should be set to " 0 ".

A05	Auto Stabilize Voltage	Invalid	0	-	0	Y

Dynamic Braking option:

0) Invalid
1) Security Type

Only in the inverter deceleration process, and detected high-voltageDCbus exceeds a predetermined value, the dynamic braking will be implemented
2) General Type

Under any state, when the inverter detected high-voltage DC bus exceeds a predetermined value, the dynamic braking will be implemented.

When the inverter is running on emergency deceleration state or load great fluctuation, it may appear overvoltage or over-current. This phenomenon is relatively prone to happen when the motor load inertia is heavy. When inverter The inverter internal DC bus detected voltage exceeds a certain value, the output brake signal through an external braking resistor implement energy-braking function. Users can select inverter models with a braking function to apply this feature.

A09	Less Voltage Level	$60 \% \sim 75 \%(S t a n d a r d$ DC bus voltage)	$\%$	70	Y

The definition of allowed the lower limit voltage of normal working inverter DC side. For some low power occasions, inverter less voltage value can be appropriately put down in order to ensure the inverter normal working.. Under normal condition, keeping default setting.

A10	Power-down Tracking Options	N	0	-	0	Y
		Power-off tracking mode	1			
		Startup tracking mode	2			
A11	Power-down tTracking Time	0.0-20.0		S	0.0	Y

This parameter is used to select the inverter tracking mode.
0) N speed tracking means to start tracking from 0 Hz

1) Power-down tracking

When the inverter instantaneous power off and re-start, the motor will continue running with current speed and direction. If the power off time is longer than A11 set time, the inverter will not re-start power on again.

2) Startup tracking

It means that when power on, inverter will first inspect motor direction and speed, and then driving motor with current speed and direction. Set startup tracking function, power off tracking function is still valid.

power down track state

							A12	Power Down Frequen- cy Drop Point	$65^{\sim} 100 \%($ standard DC bus voltage)	$\%$	75	Y
A13	Power Down Frequen- cy Drop Time	$0.1-3200.0$	s	5.0	Y							

Correctly setting this parameter can let inverter does not less voltage stop in case of instantaneous power off.
When the DC bus voltage drop to frequency drop point A12 set, inverter will decelerate according to deceleration time A13 set and stop outputting power to load. Meanwhile, inverter will use load feedback energy to compensate DC bus voltage dropping and keep inverter working in short time.
Power down frequency drop time actually is deceleration time of frequency dropping after power off.
If this value set is too large, the load feedback energy is small, and then inverter cannot compensate for voltage dropping in DC.
If this value set is too small and there is large energy feedback from load, the excessive energy compensation may cause inverter over-voltage fault.
Set A12 100\% to cancel power off frequency dropping function.

A14	Current Limit	Off	0	-	0	Y
		On	1			
A15	Limit Fall Time	0.1-3200.0		S	10.0	Y
A16	Limit Deceleration Protection Point	10-250		\%	130	Y
A17	Limit Fix-speed Protection Point	10-250		\%	120	Y

Current limitation function can effectively restrain over-current caused by motor load fluctuation in the process of acceleration and deceleration or constant speed operation. This function will be good effect for V/F control mode. Under protection of current lost- speed state, the motor speed will drop. so it is not adapted by system which is not allowed to automatically drop speed. In operation process, when the motor current surpass value A16 set, motor will decelerate according to deceleration time A15 set until current below value A16 set. In operation process, when the motor surpass value A17 set, motor will run with this speed until current below value A17 set.
Deceleration current limitation is prior of constant speed limitation.

A18	Output Phase Lose Protection	No protection of phase lost	0	-	0	Y
		Warning and constant running	1			
		Warning and deceleration	2			
		Warning and free stopping	3			
A19	Grade Of Phase Lose Protection	10-100		\%	30	Y

When ratio of unbalance 3phase output surpass A19 Grade of phase lose protection, the inverter output phase lose protection will action, and the system display fault PH-O.
Output frequency less than 2.00 Hz , there is no output phase loses protection.
Phase lost protection grade $=$ max current difference between phases, which will be according to load condition.

A20	Over Torque Inspected Action	No torque inspection	0	-	0	Y
		Warning and running	1			
		Warning and decelerating stop	2			
		Warning and free stopping	3			
A21	Over Torque Grade	10-100		\%	130	Y
A22	Over Torque Inspection Time	0.0-60.0		S	0.1	Y

Motor output current surpasses value A21 set, Over torque inspection will be force and the system will show OL2 fault.

A23	Electronic Thermal	Off	0	-	0	Y

	Relay Protection Se- lection	On	1		
A24	Electronic Thermal Protection Grade	$120-250$	$\%$	120	Y

This function is to protect motor overheating when motor does not use thermal relay. Inverter using some parameters to calculate motor temperature rise, at the same time to determine whether the use of current caused motor overheat. When you choose electronic thermal protection function, the drive output is shutdown after overheating detected also shows information of protection.

A24 set the electronic thermal protection level. When the current is the rated motor current multiplies the parameter, the drive in 1 minute protects thermal protection within one minute that means the actual current is A24 times of the rated current.

A25	Fault Reset Times	$0-10$	-	0

In the inverter operation process, Over Current expressed by OC, Over Voltage by OU, inverter can automatically recover and run with state of preceding fault. Recovering times will be according to this parameter. It can set 10 times at most. When this parameter is set " 0 ", inverter will not automatically recover after meeting fault. But if relay in DC main circuit meet fault "MCC" or less voltage "LU" fault, inverter will automatically recover without limitation.
Restarting from fault and normally running over 36 s , inverter will automatically recover fault reset times preset.
Restarting from fault and normally running over 36 s, inverter will automatically recover to display monitor parameter.
After 10 s of meeting fault, inverter will not recover fault reset function.

A26	Fault Reset Time	$0.5-20.0$	s	1.0	Y

Setting interval of fault reset time. When inverter met fault and stopped outputting, and when it inspected without fault time is longer than fault reset time, Inverter will automatically implement fault reset.

A27	Fan Startup Tempera- ture	$0.0 \sim 60.0$	${ }^{\circ} \mathrm{C}$	0.0	Y

Set the fan start temperature. When the actual temperature of theS08is higher than the set temperature the fan starts.
To avoid the fan frequently starts and stops, the fan stop temperature = A27 fan start temperature $-1.0^{\circ} \mathrm{C}$

A28	This Inverter Commu- nication Address	$1-128$	-	8

This Inverter communication address: it is the only code to differentiate from other inverters.
Setting range " $1 \sim 127$ " is slave inverter address, that can receive command and send out this inverter state. Seeing attachment 1 for detailed specification.
The proportion of linkage function:
The proportion of linkage host inverter:
This inverter communication address=128,.
Communication interface A is set as host inverter communication interface for proportion of linkage.
Communication interface B can be treated as keyboard interface or "PC" Host Computer Interface.
The proportion of linkage slave inverter:

This inverter communication address $=1 \sim 127$.

A29	Baud Rate	1200	0	bps	4	Y
		2400	1			
		4800	2			
		9600	3			
		19200	4			
		38400	5			

The baud rate of communication port A can be set accordingly.
The baud rate of communication port B is fixed 19200bps.

A30	Communication Format	The number of bits, parity, stop bits		-	0	
		8, No, 1	0			Y
		8, No, 2	1			
		8, Even, 1	2			
		8, Odd, 1	3			
		8, Even, 2	4			
		8, Odd, 2	5			
A31	Communications Troubleshooting	N warning for communication fault	0	-	0	Y
		Warning and running	1			
		Warning and decelerating stop	2			
		Warning and free stopping	3			
A32	Delay Inspection Time	1-250		S	10	Y

When communication time between interfaces A or B surpassed A32 delay inspection time, the system will warn according to A31 setting.
After power on, interface without communication will not implement warning.

A33	Total Running Time Setting	Auto clear to zero after power on	0	-	1	Y
		Continue to accumulate running time after power on	1			
A34	Unit Of Total Running Time	Hour	0	-	0	Y
		Day	1			

The set for unit of accumulation running time, only for display of running time.
0) Hour - display range $0 \sim 3200.0$ hour.

1) Day - display range $0 \sim 3200.0$ day.

| A35 | Motor Output Speed
 Adjustment | $0.1-1000.0$ | $\%$ | 100.0 |
| :--- | :---: | :---: | :---: | :---: | Y

Using for displaying adjustment of motor actual running speed.SeeingA00~A02 monitor options: 6: motor actual running speed.
Setting 100%, corresponding display unit : rpm.
The max speed of displaying after adjustment is 9999.

| A36 | Adjustment Of Motor
 Output Power | 0.1 -1000.0 | $\%$ | 100.0 |
| :---: | :---: | :---: | :---: | :---: | Y

Used for displaying motor output power of adjustment. Seeing A00~A02 monitor options: 11: motor output power. Setting 100\%, corresponding display unit: \%.

The max output power of displaying after adjustment is 2999.9.

A37	Keyboard Lock Func- tion Options	$0-0 F F$	-	000

Key SET+ESC in Keyboard can activate and cancel keyboard lock function.

To lock which key will be decided by corresponding parameter :

Bit	Keyboard locked state	
0	Unlock FWD key	0
	Lock FWD key	1
1	Unlock STOP key	0
	Lock STOP key	1
2	Unlock PRG key	0
	Lock PRG key	1
3	unlock SET key	0
	Lock SET key	1
4	Unlock ESC key	0
	Lock ESC key	1
5	Unlock MF1 key	0
	Lock MF1 key	1
6	Unlock MF2 key	0
	Lock MF2 key	1
7	Unlock potentiometer	0
	Lock potentiometer	1

A38	UP/DN Control	1 bit	Power down to save	0	-	0000	Y
			Power down to clear saving	1			
		10 bit	saving after stopping	0			
			Stop command to clear saving	1			
			Cleared at the end of stopping	2			
		100 bit	One-direction adjustment	0			
			Double-direction adjustment	1			
		$\begin{aligned} & 1000 \\ & \text { bit } \end{aligned}$	Invalided adjustment	0			
			Valid adjustment	1			
A39	UP/DN Time	1 bit	UP fix speed	0			
			UP fix times	1			
		10 bit	DN fix speed	0			
			DN fix times	1			
		100 bit	UP no adjustment of speed ratio	0			
			AI1 adjustment of the external analog giving	1			

1 bit - UP acceleration mode

0) Fix speed acceleration, according to A41 fix speed: To increase frequency every 200 ms .
1) Fix times acceleration, according to fix times: To increase frequency every triggering.

10 bit - DN deceleration mode
0) Fix speed deceleration, according to A42 fix speed: To reduce frequency every 200 ms .

1) Fix times deceleration, according to $\mathbf{A} 42$ fix times: To reduce frequency every triggering.

100 bit - UP adjustment mode of adjusting speed ratio

0	UP N Adjustment Of Speed Ratio	No adjustment
1	Al1 Adjustment Of The External Analog Giving	Actual UP adjustment ratio= percentage given by A41*AI1
2	Al2 Adjustment Of The External Analog Giving	Actual UP adjustment ratio= percentage given by A41*AI2
3	Al3 Adjustment Of The External Analog Giving	Actual UP adjustment ratio= percentage given by A41*AI3
4	Adjustment Of Potenti- ometer Giving	Actual UP adjustment ratio= percentage given by A41* potentiome- ter
5	Adjustment Of Multi- steps Digital Voltage	Actual UP adjustment ratio=percentage given by A41* multi-steps digital voltage

1000 bit -DN adjustment mode of adjusting speed ratio

0	N Adjustment Of Accele-	No adjustment

	ration Time	
1	Al1 Adjustment Of The External Analog Giving	Actual DN adjustment ratio =percentage given by A42*AI1
2	Al2 Adjustment Of The External Analog Giving	Actual DN adjustment ratio =percentage given by A42*AI2
3	Al3 Adjustment Of The External Analog Giving	Actual DN adjustment ratio=percentage given by A42*AI3.
4	Adjustment Of Potenti- ometer Giving	Actual DN adjustment ratio=percentage given A42*potentiometer
5	Adjustment Of Multi- steps Digital Voltage	Actual DN adjustment ratio=percentage given by A42*multi-steps digital voltage.

A40	UP/DN Adjustment Value	-300.00-300.00		Hz	0.00	Y
Frequency after adjustment = set frequency+UP/DN adjustment value.						
A41	UP Adjustment Ratio	0.01-20.00		Hz	0.01	Y
A42	DN Adjustment Ratio	0.01-20.00		Hz	0.01	Y
$\begin{aligned} & \text { A43 } \\ & \text { A44 } \end{aligned}$	The Definition Of Multifunction Keys MF1 And MF2	MF is defined as adding function key	0	-	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & Y \\ & Y \end{aligned}$
		MF is defined as reducing function key	1			
		MF is defined as free stopping key	2			
		MF is defined as FWD running key	3			
		MF is defined as REV running key	4			
		MF is defined as forward JOG function key.	5			
		MF is defined as reverse JOG function key.	6			
		MF is defined as JOG function key.	7			
		MF is defined as UP function key	8			
		MF is defined as Down function key.	9			
		UP / DN adjusted value reset	10			
		keyboard potentiometer setting value reset	11			

The user defined keyboard can define MF key functions.
0) MF is defined as adding function key

Under monitor menu, adding function key MF can adding revise frequency F01 set.
Under parameter choosing menu, adding function key MF can adjust parameter choice.
Under parameter revising menu, adding function key MF can adjust parameter value.

1) MF is defined as reducing function key

Under monitor menu, reducing function key MFcan reducing revise frequency F01 set
Under parameter choosing menu, reducing function key MF can adjust parameter choice.
Under parameter revising menu, reducing function key MF can adjust parameter value.
2) MF is defined as free stopping key

MF key is valid under monitor menu and select parameter menu, inverter will be free stopping. After free stop, no start command, 1s later, allow running again.
3) MF is defined as FWD running key

Pressing MF key is valid under monitor menu and parameter choosing menu, inverter will be forward running.
4) MF is defined as REV running key

Pressing MF key is valid under monitor menu and parameter choosing menu, inverter will be reverse running.
5) MF is defined as forward JOG function key

Pressing MF key is valid under monitor menu and parameter choosing menu, inverter will be forward JOG running.
6) MF is defined as reverse JOG function key

Pressing MF key is valid under monitor menu and parameter choosing menu, inverter will be reverse JOG running.
7) MF is defined as JOG function key

Pressing MF key is valid under monitor menu and parameter choosing menu, inverter will be JOG running. Running direction decided by F35 bit setting and terminal state.
8) MF is defined as UP function key

Pressing MF is always valid, inverter will be UP control, control parameter decided by A38~A42.
9) MF is defined as Down function key

Pressing MF is always valid, inverter will be DOWN control, control parameter decided by A38~A42.
10) MF is defined as the UP / DN adjusted value reset

A40 UP / DN adjusted value reset, level-triggered.
11) MF is defined as the setting value of potentiometer on the keyboard

A47 keyboard potentiometer setting is reset, level-triggered

A45	Keyboard potentiome- ter- X_{1}	$0.0-100.0$	$\%$	0.0
A46	Keyboard potentiome- ter $-X_{2}$	$0.0-100.0$	$\%$	100.0
A47	The Value Of Key- board Potentiometer Set	$0.0-100.0$	$\%$	-

Displaying value potentiometer set, which can be revised by potentiometer under monitor menu?
Value potentiometer set can be regarded as analog of frequency giving, set value = max frequency
*keyboard potentiometer set value.
Potentiometer set value can be regarded as value of PID giving, value of PID giving=keyboard potentiometer set value.

		100 bit	-				
		$\begin{gathered} 1000 \\ \text { bit } \end{gathered}$	-				
A51	Temperature Adjustment Of Motor	0.0-200.0			\%	100.0	N
Being used to revise displaying of A54 motor temperature.							
A52	Over-heat Temperature Of Motor	0.0-300.0			${ }^{\circ} \mathrm{C}$	120.0	N
A53	Reaction For Motor Over-heat	No reac	ion for motor over-heat	0	-	0	Y
		Warnin	and running	1			
		Warnin	and deceleration stopping	2			
		Warnin	and free stopping	3			

When the temperature controlled drive, indicated by parameter A54, above the set point in parameter A52 will be executing the action set in parameter A53.
A54
Display Of Motor
Temperature
-50.0-300.0
${ }^{\circ} \mathrm{C}$

	-

Shows the motor temperature or temperature at other point.
Control card PT100 plug should plug into the optional PT100 thermocouple devices
Three lines PT100

PT100
(3-wire)

A55	Proportion Of Linkage Ratio	$0.10-10.00$	-	1.00

In application of proportion of linkage, A55 setting is multiply ratio of that when slave inverter received setting frequency command from host inverter.
Setting this inverter as one slave inverter of system for proportion of linkage.
Frequency Keyboard F01 set = proportion of linkage ratio* frequency S00 set by host inverter

IO function group:000-068

Code	Description / LCD	Setting Range	Unit	Factory Setting	Change Limited
000	Al1 Input - X_{1}	0.0-100.0	\%	0.0	Y
001	Al1 Input - X_{2}	0.0-100.0	\%	100.0	Y
002	Al2 Input - X_{1}	0.0-100.0	\%	0.0	Y
003	Al2 Input - X_{2}	0.0-100.0	\%	100.0	Y
004	Al3 Input - X_{1}	0.0-100.0	\%	0.0	Y
005	Al3 Input - X_{2}	0.0-100.0	\%	100.0	Y
006	Al1 Input - Y_{1}	0.0-100.0	\%	0.0	Y
007	Al1 Input - Y_{2}	0.0-100.0	\%	100.0	Y
008	Al2 Input - Y_{1}	0.0-100.0	\%	0.0	Y
009	Al2 Input - Y_{2}	0.0-100.0	\%	100.0	Y
010	Al3 Input - Y_{1}	0.0-100.0	\%	0.0	Y
011	Al3 Input - Y_{2}	0.0-100.0	\%	100.0	Y

Under the situation Max frequency $=50.00 \mathrm{~Hz}$

Example 1

\mathbf{X}	\mathbf{Y}	$\mathbf{F}=\mathbf{F}_{\text {max }}{ }^{*} \mathbf{Y}$
$[\%]$	$[\%]$	$[\mathrm{Hz}]$
0	0	0
50	50	25
100	100	50

Example 2

\mathbf{X}	\mathbf{Y}	$\mathbf{F}=\mathbf{F}_{\text {max }}{ }^{*} \mathbf{Y}$
$[\%]$	$[\%]$	$[\mathbf{H z}]$
0	0	0
20	0	0
35	25	12.5
50	50	25
100	50	25

Example 3

\mathbf{X}	\mathbf{Y}	$\mathbf{F}=\mathbf{F}_{\max }{ }^{*} \mathbf{Y}$
$[\%]$	$[\%]$	$[\mathbf{H z}]$
0	20	10
25	35	17,5
50	50	125
75	50	25
100	50	25

Example 4

\mathbf{X}	\mathbf{Y}	$\mathbf{F}=\mathbf{F}_{\max }{ }^{*} \mathbf{Y}$
$[\%]$	$[\%]$	$[\mathbf{H z}]$
0	-100	-50
25	-50	-25
50	0	0
75	50	50
100	100	100

Skipping thread of AI1, AI2, AI3 respectively are JP3/JP5, JP6, JP7, seeing the following detailed specification:

This parameter is used for setting upper/lower limitation of DA1/DA2 output signal.
Such as:
If DA1 output 1~5V voltage, setting parameter as: $\mathbf{0 1 7}=10.0 \%, \mathbf{0 1 8}=50.0 \%$
If DA2 output 4~20mA current, setting parameter as: $\mathbf{0 1 9}=20.0 \%, \mathbf{o 2 0}=100.0 \%$

DA1, DA2 Skipping thread:

Caution: Every terminal has choice of voltage output and current output, the default setting is voltage output. When the voltage output is needed, please connect JP1/JP2 and DA1V/DA2V (seeing the panel). When the current output is needed, please connect JP1/JP2 and DA1C/DA2C.

domestic and industrial automation

21	N command running state	Inverter is under N command running state
22	REV running from inverter command	Inverter is under reverse running command
23	Deceleration running	Inverter is under deceleration running
24	Acceleration running	Inverter is under acceleration running
25	Arrival of high pres- sure	Arrival at high pressure
26	Arrival of low pressure	Arrival at low pressure
27	Arrival of inverter rate current	Arrival at inverter rate current
28	Arrival of motor rate current	Arrival at motor rate current
29	Arrival of input fre- quency lower limita- tion	Present set frequency is less than frequency lower limitation
30	Arrival of current up- per limitation	Arrive at current of upper limitation
31	Arrival of current low- er limitation	Arrive at current of lower limitation
32	Time to reach limit time 1	Timing action mode refer to o65 configuration
33	Time to reach limit time 2	Timing action mode refer to o66 configuration
34	Inverter ready to runThe end of initialization when the drive is power on and running command is acceptable	

025	01 Output Signal Delay	0-32000	S	0	Y
026	02 Output Signal Delay	0-32000	S	0	Y
027	O3 Output Signal Delay	0-32000	S	0	Y
028	O4 Output Signal Delay	0-32000	S	0	Y

025~028 defines 021~o24 output signal reaction delay time, unit is s.
Output signal cut off action without delay.

$\mathbf{0 2 9}$	FDT Set Frequency 1	$\mathbf{o 3 0}$ - Max frequency	Hz	0.00	Y
$\mathbf{0 3 0}$	FDT Set Frequency 2	Min frequency - o29	Hz	0.00	Y
$\mathbf{0 3 1}$	FDT	$0.00-5.00$	Hz	0.00	Y

When the choice of output signal ($\mathbf{0 2 1 \sim 0 2 4 \text {) is set as 14, inverter output frequency arrives at or surpass FDT set }}$ frequency 1, the corresponding signal output terminal will react. When inverter output frequency is below of FDT frequency set 1, the corresponding signal output terminal will not react.
When the output signal options(021~024) is set as 15 , inverter output frequency reaches or surpass FDT set frequency 2 , the corresponding signal output terminal will react. When inverter output frequency is below of FDT frequency set 3 , the corresponding signal output terminal will not react.
When the output signal options ($\mathbf{0} 2 \mathbf{2 1}^{\sim} \mathbf{o 2 4}$)is set as 16 , inverter will firstly inspect FDT set frequency 1, then inverter output frequency arrives at or surpass FDT set frequency $\mathbf{1}$, the corresponding signal output terminal will react. After terminal reaction, inverter will inspect FDT set frequency $\mathbf{2}$-when inverter output frequency is below of FDT set frequency 2 , the corresponding signal output terminal will not react.

o31-Frequency inspection range

This parameter is used to define inspection range. When the difference of actual frequency and inspected frequency has surpassed inspection range, terminal will output react.
e.g.: FDT set frequency 1 as 35 Hz , FDT set frequency 2 as 30 Hz , Frequency inspection range is 0 , the signal output terminal will react as below:

$\mathbf{o 3 2}$	Arrival Of Current Upper Limitation	$\mathbf{0 3 3 - 2 0 0 \%}$	$\%$	120
$\mathbf{0 3 3}$	Arrival Of Current Lower Limitation	$0-\mathbf{0 3 2}$	$\%$	20
$\mathbf{0 3 4}$	Current Inspection Range	$\mathbf{0 3 2 - 0 3 3}$	$\%$	3

 the corresponding output signal terminal will react. When the inverter output current is less than 032-034, The corresponding output signal terminal will not react.
When the output signal options ($\mathbf{0 2 1 \sim 0 2 4 \text {) is set as 31, and inverter output frequency reach or less than 033-034, }}$ the corresponding output signal terminal will react. When the inverter output current is more than 033+034, the corresponding output signal terminal will not react.
o34 is used to define current inspection range. When the difference of actual current and inspected current has surpassed inspection range, the output terminal will react.

035	Terminal Control Mode	1 bit	Two-wire running control 1	0	-	0000	N
			Two-wire running control 2	1			
			Three-wire running control 1	2			
			Three-wire running control 2	3			

Setting terminal running mode by this parameter.

1 Bit - Set terminal running mode

The polarity of electrical level is 047 default setting polarity. Low electrical level or falling edge is valid, and the terminal is leakage-source driving mode.
X can be used to express high or low electrical level, rising or falling edge.

Running Control Mode	Keyboard Running Control	Prior Running	Prior Direction
Edge Trigger	Valid	Same	Same
E-level Trigger	Invalid	Prior running	Prior FWD

0) Two wire running control 1

F05=1 or F05=4		F05=3		Command
FWD	REV	FWD	REV	
Falling edge	X	Low E Level	X	FWD running
X	Falling edge	High E-level	Low E-level	
Rising edge	Rising edge	High E-level	High E-level	STOP running
Rising edge	Rising edge	High E-level	High E-level	STOP running

1) Two wire running control 2

F05=1 or F05=4		F05=3	Command	
FWD	REV	FWD		

Falling edge	Falling edge	Low e-level	Low e-level	FWD running
Falling edge	Rising edge	Low e-level	High e-level	REV running
Rising edge	X	High e-level	X	STOP running

2) Three wire running control 1

F05=1; F05=3; F05=4		Command	
FWD	REV		
Falling edge	Low e-level	Low e-level	FWD running
Falling edge	High e-level	Low e-level	REV running
X	X	High e-level	STOP running

3) Three wire running control 2

F05=1; F05=3; F05=4			Command
FWD	REV	STOP	
Falling edge	X	Low e-level	FWD running
X	Falling edge	Low e-level	REV running
X	X	High e-level	STOP running

4) One-shot operation control 1

F05 $=1 ;$ F05 $=4 ;$ F05=3	Command	Current state

FWD	REV		
『 \dagger	X	FWD running	STOP running
Keep	$\Psi \perp$	REV running	STOP running
Ш \dagger	X	STOP running	FWD running
Keep	$\longleftarrow \perp$	REV running	FWD running
『	X	FWD running	REV running
Keep	$\Psi \perp$	STOP running	REV running

5）One－shot operation control 2

F05＝1 ；F05＝4 ；F05＝3		Command	Current state
FWD	REV		
「	Low e－level	FWD running	STOP running
「	High e－level	REV running	STOP running
『 \dagger	X	STOP running	FWD running
『 \dagger	X	STOP running	REV running

10 bit－Set the terminal status when power on
0）Terminal run command invalid when Power on
Terminal run command invalid when Power on，．Only run 3 s later after power on and set terminals invalid．
1）Terminal run command valid when Power on
Terminal status is effective when Power on，inverter will run immediately，in some cases such status will not be allowable．

036	DI1 Input Terminal	No function	0	－	0	Y
037	Function Selection	Forward running FWD	1	－	0	Y
038		Reverse running REV	2	－	0	Y
039	DI2 Input Terminal	3－line mode running STOP	3	－	0	Y
040	Function Selection	Multi－segment command 1	4	－	0	Y
041		Multi－segment command 2	5	－	0	Y
042	DI3 Input Terminal	Multi－segment command 3	6	－	0	Y
043	Function Selection	Multi－segment command	7	－	0	Y
044		Multi－segment speed command 1	8	－	0	Y
045	DI4 Input Terminal	Multi－segment speed command	9	－	0	Y
046	Function Selection	Multi－segment speed command 3	10	－	0	Y

		to suspend operation	
	44	program running start mode	program running start mode
	45	program running stop mode	program running stop mode
	46	pulse count clearance	Edge-triggered, frequency inverter pulse coun tero53Clearance
	47	pulse count input	Edge-triggered, set the pulse counter input terminal
	48	before count loading	Edge-triggered, pulse-load preset counter o53counts to o54
	49	upper count loading	Edge-triggered pulse counter counts o5 maximum load o53
	50	External default signal input (level)	External default signal input(level), level trigger , the system will alarm E_Set after valid
	51	1 pump soft-start	Electric level spring, control 1 pump soft-start or stop.
	52	1 pump stop	Soft-start control must use 2 terminal controls, stop priority. Need to set EO1 load model 9, E12 1pump is soft-start control pump.
	53	2 pump soft-start	Electric level spring, control 2 pump soft-start or stop.
	54	2 pump stop	Soft-start control must use 2 terminal controls, stop priority. Need to set EO1 load model 9, E12 2pump is soft-start control pump.
	55	3pump soft-start	Electric level spring, control 3 pump soft-start or stop.
	56	3 pump stop	Soft-start control must use 2 terminal controls, stop priority. Need to set EO1 load model 9, E12 3pump is soft-start control pump.

	57 58	4 pump start	Electric level spring, control 4 pump soft-start or stop. Soft-start control must use two terminal controls, stop has the priority. Need setting E01 load style 9, E12 4 pump is soft - start control pump.
	59	Hand change order	electric level spring, automation multi-pump constant water changed
	60	the period of time water supply change to zero	electric level spring the period of time water supply change to zero
	61	Extruder acceleration and deceleration direction	DIx input terminal function selection, read o36046
	62	Extruder acceleration and deceleration allowable	DIx input terminal function selection, read o36046.
	63	Limit time 1 input	DIx input timing - limit time 1, refer to 065, 067.
	64	Limit time 2 input	Dlx input timing - limit time 2, refer to 066, 068
	65	Program switching to the next segment	Program running controlled, single trigger switch to the next segment
	66	UP/DN adjusted value reset	A40 UP/DN adjusted value reset, level trigger.
	67	Keyboard potentiometer set value reset	A47keyboard potentiometer setting value reset level trigger.
	68	External default signal input (edge)	External default signal input, edge trigger (falling edge), the system will alarm E-Set after valid

047
Polarity of input and output terminals
This parameter used to select every IO terminal is valid in which polarity and terminal running command is valid or not when power on.

048-049 define Input terminal reponse time, through o50 select the reponse time according the terminal.
The delay time of the input terminal is valid to the close and cut off action!
Set the parameter choose Input terminal response time according every terminal.

$\mathbf{0 5 0}$ $\mathbf{0 - 1 0}$ bit	The polarity of input terminal
0	o48 input terminal response time 0
1	o49 input terminal response time 1

051	Counter Collocation	1 bit	Circle counter operating	0 1		0	Y
			Single cycle counter running				
		10	Arrive at upper counter value and reload	0			
		10 bit	Arrive at upper counter value and clear savings	1			
			Power on to reload	0			
		100 bit	power on to clear savings	1			
			power on to keep previous count status	2			
		1000	Count period	0			
		bit	Output signal valid time 20ms	1			

			Output signal valid time 100 ms	2			
		Output signal valid time 500 ms	3				

1 bit - Control count mode

0) Circulate count, Arrive at upper counter value, output the arrival pulse(output terminal setting)
1) Single circulates count, after arrive at upper counter value, output the arrival pulse, and stop running.

10 bit - Operating after circulate mode reach upper limit count

0) Reload
1) Clear up

100 bit - Define the status of the counter after power on

0) Reload after power on
1) Clear up after power on
2) Keep the status of the previous count

1000 bit - Define o21~o24 is set to reach the preset count or counts to reach the maximum output signal delay time

0) Count period, when reach this digital, keep this status valid, direct the change of the count.
1) The valid time of the output signal 10 ms , when reach this count, fixed keep the output status valid 10 ms .
2) The valid time of the output signal 100 ms , when reach this count, fixed keep the output status valid 100 ms .
3) The valid time of the output signal 500 ms , when reach this count, fixed keep the output status valid 500 ms .

o52	Maximum Pulse Input Frequency	$0.1-50.0$	kHz	20.0	Y

This parameter defines the most pulse input frequency of analog setting frequency.
Input high signal frequency, only through multi-function input terminal DI8 as the pulse input terminal. Input pulse setting frequency according the the most input upper limit.
Input pulse setting frequency, most input pulse frequency 052 according the most output frequency F12.
Pulse input frequency f_pulse corresponding setting frequency f_set formula: f_set=f_pulse/o52*F12.
Pulse input analog setting, input most pulse frequency 052 according 100.0\%.
Pulse input frequency f_pulse corresponding analog p_set formula: p_set=f_pulse/o52*100.0\%.

$\mathbf{o 5 3}$	Current Counter Status	$0-9999$	-	0
$\mathbf{o 5 4}$	Preset Counter Setting	$0-\mathbf{0 5 5}$	-	0
$\mathbf{o 5 5}$	Upper Limit Counter Setting	$\mathbf{0 5 4 - 9 9 9 9}$	-	\mathbf{Y}

When the pulse signal of the input terminal satisfies with the preset condition, Yi terminal output the corresponding indication.

1) Selection of Input terminal DiX ($X=1 \sim 8$)

Input terminal is set to "pulse count input", and set o54, o55.
Input terminal is set to "pulse counter clear", after terminal works, counter is cleared.
Input terminal is set to "upload of pulse count value", after terminal works, counter uploads preset count value.
Input terminal is set to „upload of upper count value", after terminal works, counter uploads the upper count value.
2) Selection of Output Terminal o21~o24
o21set the arrival of preset count, the effective time of output signal after reaching up count value is set by 051.
o22 set the arrival of up count value, the effective time of output signal after arriving at the upper count value is set by 051 .

Frequency range of counting pulse signal: $0 \sim 100 \mathrm{~Hz}$.

Another parameter O56 bits allow attach virtual input terminals corresponding to the actual input inverter.

Setting	Virtual terminal valid choose
0	Actual input terminal valid
1	Virtual input terminal valid

$\mathbf{o 5 7}$	DI1~DI4 Terminal Status	$0000-1111$	-	-	Y
$\mathbf{o 5 8}$	DI5 $^{\sim}$ DI8 Terminal Status	$0000-1111$	-	-	Y
$\mathbf{o 5 9}$	AI1~AI3 Terminal Status	$000-111$	-	-	Y
$\mathbf{o 6 0}$	O1~O4 Terminal Status	$0000-1111$	-	-	Y

Make the actual terminal can only be effective check terminal state.
Make the Virtual terminal can only be effective through register check terminal state.

$\begin{aligned} & 061 \\ & 062 \end{aligned}$	PL1 Pulse Output PL2 Pulse Output	No action	0	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$Y$$Y$
		Set frequency	1			
		Actual frequency	2			
		Actual current	3			
		Output voltage	4			
		DC bus voltage	5			
		IGBT temperature	6			
		Output power	7			
		Output rpm	8			
		Actual torque	9			
063	SPA pulse output ratio	1-1000		-	1	Y
064	SPB pulse output ratio	1-1000		-	1	Y

SPA, SPB provide two isolated pulse output signal can be analogical multiple analog output signals.
SPA, SPB provide high speed pulse output function. Set by $061^{\sim} 064$ and set functions valid when inverter power on again.

SPA corresponding output signal 1, this function selected, o21 DO1 output action is invalid.
SPB corresponding output signal 2, this function selected, o22 DO2 output action is invalid.
Pulse output ratio $=1$, output signal range $0 \sim 50 \mathrm{hz}$.
мaximum pulse output frequency 50 KHz , minimum frequency 1 hz .
for example
SPA pulse output options = 2 Actual frequency;

```
SPA pulse output options = 10
    The actual output pulse frequency = actual frequency / maximum frequency * 50hzx10.
    SPA pulse output options =3 Actual current
    SPB pulse output ratio=20
    The actual output pulse frequency = actual current percentage 200*50hz*20
```

Value	Output	Output Signal Range Definition
0	No action	No output
1	Set frequency	0^{\sim} Max frequency
2	Actual frequency	0^{\sim} Max frequency
3	Actual current	$0^{\sim} 200 \%$, corresponding parameter: S03 output cur- rent percentage
4	Output voltage	$0^{\sim} 200 \%$, correlation parameter: b02, b15 motor rated voltage
5	Bus voltage	$0^{\sim} 1000 \mathrm{~V}$ DC voltage
6	IGBT temperature	$0^{\sim} 100.0^{\circ} \mathrm{C}$
7	Output power	$0^{\sim} 200 \%$
8	Output torque	$0^{\sim} \mathrm{Max}$ torque
9	Actual torque value	$0^{\sim} 200 \%$ torque

$\begin{aligned} & 065 \\ & 066 \end{aligned}$	Limit time 1 configuration Limit time 2 configuration	1 Bit	Boot time	0	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & Y \\ & Y \end{aligned}$
			Running timing	1			
		10 Bit	Reserved	-			
		100 Bit	Reserved	-			
		1000 Bit	Reserved	-			

1 Bit - Timing mode

0) Boot time - timing of running and breaking
1) Running timing - only timing of running

10 Bit - Reserved
100 Bit - Reserved
1000 Bit - Reserved

$\mathbf{0 6 7}$	Limit Time 1	$0.0-3200.0$	s	2.0	Y
$\mathbf{0 6 8}$	Limit Time 2	$0.0-3200.0$	s	2.0	Y

Set timing of Limit Time 1 and Limit Time 2
Actual limit time on the basis of the set time multiplied by a run time multiple, such time multiple set by the ten bit of F49, refer to F49 instructions.

Multi-speed PLC Group: H00-H55

Code	Description / LCD	Setting Range			Unit	Factory Setting	Change Limited
H00	Multi-speed Collocation	1 bit	Program running function cancel	0	-	0000	Y
			Program running function	1			
			Direction decided by H40~H46	0			
		10 bit	Direction decides by Terminal and keyboard	1			
		100 bit	Deceleration and acceleration time decides by H26~H39	0			

1 bit - Program running functions intelligent

To use the program to run PLC functionality requires setting the bit to 1.
Multi-segment speed run only need to set the corresponding multi-stage $\mathbf{0 3 6}$ ~ $\mathbf{0 4 6}$ speed switching can be used without the need to set this parameter.
0) Program running functions cancel

1) Program running function intelligent

10 bit - Define program runs or direction settings of multi-segment speed running
0) the direction decided by the $\mathbf{H 4 0} \sim \mathbf{H 4 6}$

1) The direction decided by the keyboard or terminal

100 bit - Define program runs or acceleration and deceleration time settings of multi-segment speed running
0) deceleration time decided by the H26 ~ H39

1) The acceleration and deceleration time determined by terminal

1000 bit - Set running time of defined program running

0) running-time decided by the $\mathbf{H 1 8} \sim \mathbf{H 2 5}$
1) Running time decided by terminal

H01	Program Running Configuration	1 bit	sequence control	0	0710	Y
			terminal control	1		
		10 bit	Program running start segment	0-15		
		100 bit	Program running end segment	0-15		
		$\begin{gathered} 1000 \\ \text { bit } \end{gathered}$	Output signal valid time 8 ms	0		
			Output signal valid time 20ms	1		
			Output signal valid time 100 ms	2		
			Output signal valid time 500ms	3		

1 bit - Program run control mode

$0)$ sequential control - run automatically according to the start segment, end segment and program running time of program running. You can use o36 ~ 046 switchover next function, switchover to the next program running.

1) Terminal control - use multi segment control terminal 036 ~ 046 multi segment instruction 1, 2, 3, 4, Control program segment, running time arrives. Running based on the 0 paragraph speed. After Multi - Stage speed control terminal switchover, reevaluate running time. Do not use of multi - stage speed control terminal $\mathbf{0 3 6} \sim \mathbf{~} \mathbf{0 4 6}$ multi - speed instruction. You can use $\mathbf{0 3 6} \sim \mathbf{~} \mathbf{0 4 6}$ switchover next function. The terminal control for single trigger, triggered once, program running to next paragraph, running time recalculated. Running time of arrival, running based on the 0 paragraph speed.

10 bit - Defining the start running of the Program

100 bit - Defines the end of the program period

1000 bit - Define effective time of the program output signal

H02	Program Mode	Running	1 bit	Single-cycle	012	0000	Y
				Continuous Cycle			
				One-cycle command running			
			10 bit	The zero speed running when pause	0		

1 bit - Running cycle

0) Single cycle
1) Continuous cycle

2: Single cycle, running according to H01 speed of the end, stop after accepted the stopped orders.

The program runs three styles as following:
Eg1:The program is run single - cycle modes

Eg2:program run Continuous cycle modes

Eg3:Program is running in single cycle, According to Paragraph seventh of Speed mode

10 bit - Running condition when pause
0) Speed run when pause

1) Fixed Segment Speed operation when pause

100 bit - Running Segment when stop

0) Set stopping according to the parameters of stop segment.
1) Set down to the initial segment

1000 bit - Start Running Segment

0) Set down to the speed running
1) Running at the speed before the machine stopped

Eg: 100 bit $=0$ Set stopping according to the parameters of stop segment, 1000 bit=0 running at Start Segment

Eg:100 bit==0 Set stopping according to the parameters of stop segment, 1000 bit==1 Running at the speed before the machine stopped.

Eg:100 bit=1 Set down to the initial segment, 1000 bit=1 Running at the speed before the machine stopped.

Note:
at1 - at the time of segment 1 acceleration time;
dt1 - at the time of segment 1 deceleration time;
at 3 - at the time of segment 3 acceleration time;
dt3 - at the time of segment 3 deceleration time.

H03	Speed - Step 1x	Lower frequency ~ upper frequency	Hz	3.00	Y
H04	Speed - Step 2x		Hz	6.00	Y
H05	Speed - Step 3x		Hz	9.00	Y
H06	Speed - Step 4x		Hz	12.00	Y
H07	Speed - Step 5x		Hz	15.00	Y
H08	Speed - Step 6x		Hz	18.00	Y
H09	Speed - Step 7x		Hz	21.00	Y
H10	Speed - Step 8x		Hz	24.00	Y
H11	Speed - Step 9x		Hz	27.00	Y
H12	Speed - Step 10x		Hz	30.00	Y
H13	Speed - Step 11x		Hz	33.00	Y
H14	Speed - Step 12x		Hz	36.00	Y
H15	Speed - Step 13x		Hz	39.00	Y
H16	Speed - Step 14x		Hz	42.00	Y
H17	Speed - Step 15x		Hz	45.00	Y

Set the frequency of program running and the running frequency of 7 -segment speed respectively. Short-circuit the multi-terminal command $1,2,3,4$ with COM combinatorial to realize the 16 -segment speed/acceleration speed.
$\mathbf{0 x}$ speed is the regular running mode, setting source can be adjusted by F02, F03 and other parameters, running time is controlled by the $\mathbf{H 1 8}$.

Terminal multi-segment speed is defined as follows(shorted with COM it is ON, disconnected then it is OFF):

Speed	0x	1x	2x	3 x	4x	5 x	6x	7x
Terminal								
Bit 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Bit 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Bit 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Bit 4	OFF							
Speed	8 x	9 x	10x	11x	12x	13x	14x	15x
Terminal	8 x	9 x	10x	11x	12x	13x	14x	15x
Bit 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Bit 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Bit 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Bit 4	ON							

Acceleration and deceleration time and the direction of running

H00		0x-7x	$8 x-15 x$
10 bit	0	$0 x-7 x$ Direction controlled by parameter	$8 x-15 x$ Direction controlled by keyboard and terminal
	1	$0 x-7 x$ Direction controlled by keyboard and terminal	
100 bit	0	$0 x-7 x$ Deceleration and acceleration time controlled by parameter	$8 x-15 x$ Deceleration and acceleration time controlled by keyboard and terminal
	1	$0 x-7 x$ Deceleration and acceleration time controlled by terminal	
1000 bit	0	$0 x-7 x$ Running time controlled by parameter	$8 x-15 x$ Running time controlled by terminal
	1	$0 x-7 x$ Running time controlled by terminal	

H18	0 Step Running Time T0	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 1 9}$	1 Step Running Time T1	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 2 0}$	2 Step Running Time T2	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 2 1}$	3 Step Running Time T3	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 2 2}$	4 Step Running Time T4	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 2 3}$	5 Step Running Time T5	$0.0-3200.0$	s	2.0	Y
$\mathbf{H 2 4}$	6 Step Running Time T6	$0.0-3200.0$	2.0	Y	

H25	7 Step Running Time T7	$0.0-3200.0$	s	2.0	Y

Actual running time equals to the set multi-segment running time multiples a time which is times of speed running time, and such actual running time decided by the tens digit of $\mathbf{H} 4 \mathbf{N O}^{\sim} \mathbf{H 4 6}$. Please refer to $\mathbf{H 4 0 \sim} \mathbf{H 4 6}$.

H26	1 Step Acceleration Time at	0.0-3200.0	S	10.0	Y
H27	1 Step Deceleration Time dt_{1}	0.0-3200.0	S	10.0	Y
H28	2 Step Acceleration Time at ${ }_{2}$	0.0-3200.0	S	10.0	Y
H29	2 Step Deceleration Time dt_{2}	0.0-3200.0	S	10.0	Y
H30	3 Step Acceleration Time at ${ }_{3}$	0.0-3200.0	S	10.0	Y
H31	3 Step Deceleration Time dt_{3}	0.0-3200.0	S	10.0	Y
H32	4 Step Acceleration Time at	0.0-3200.0	S	10.0	Y
H33	4 Step Deceleration Time dt_{4}	0.0-3200.0	S	10.0	Y
H34	5 Step Acceleration Time at ${ }_{5}$	0.0-3200.0	S	10.0	Y
H35	5 Step Deceleration Time dt_{5}	0.0-3200.0	S	10.0	Y
H36	6 Step Acceleration Time at ${ }_{6}$	0.0-3200.0	S	10.0	Y
H37	6 Step Deceleration Time dt_{6}	0.0-3200.0	S	10.0	Y
H38	7 Step Acceleration Time at ${ }_{7}$	0.0-3200.0	S	10.0	Y
H39	7 Step Deceleration Time dt_{7}	0.0-3200.0	S	10.0	T

Set the Acc/Dec time of 7 steps respectively. They determine the time needed to reach the speed, respectively depending on the acceleration time for acceleration or on the deceleration time for deceleration, but the time is not the actual time needed. Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the hundreds and thousands digit of $\mathbf{H} 40 \sim \mathrm{H} 46$. Please refer to $\mathrm{H} 40 \sim \mathrm{H} 46$.

Definite acceleration and deceleration time for multi-step speed:

Remark:

at1-1 Step acceleration time;
at2-2 Step acceleration time;

dt2-2 Step deceleration time; dt3-3 Step deceleration time.							
H40	1 Step Speed Configuration Word 2 Step Speed Configuration Word	1 bit	Running direction: forward	0	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	Y
			Running direction: reverse	1			
		10 bit	Running time: *seconds	0			
			Running time: *minutes	1			
	3 Step Speed Configuration Word		Running time: *hours	2			
H41			Running time: *days	3			Y
4	4 Step Speed Configuration Word	100 bit	Acceleration time: *seconds	0	-	0000	
H44			Acceleration time: *minutes	1	-	0000	Y
H45	5 Step Speed Configuration Word		Acceleration time: *hours	2	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & Y \\ & Y \\ & Y \end{aligned}$
H46			Acceleration time: *days	3			
	6 Step Speed Configuration Word 7 Step Speed Configuration Word	$\begin{gathered} 1000 \\ \text { bit } \end{gathered}$	Deceleration time: *seconds	0			
			Deceleration time: *minutes	1			
			Deceleration time: *hours	2			
			Deceleration time: *days				
H47	Digital reference level - Step 0	-100.0-100.0			\%	0.0	T
H48	Digital reference level - Step 1	-100.0-100.0			\%	10.0	T
H49	Digital reference level - Step 2	-100.0-100.0			\%	20.0	T
H50	Digital reference level - Step 3	-100.0-100.0			\%	30.0	T
H51	Digital reference level - Step 4	-100.0-100.0			\%	40.0	T
H52	Digital reference level - Step 5	-100.0-100.0			\%	50.0	T
H53	Digital reference level - Step 6	-100.0-100.0			\%	60.0	T
H54	Digital reference level - Step 7	-100.0-100.0			\%	70.0	T

Digital reference may serve a similar level as any analog source, which can be used as primary and secondary frequency source, the source of the PID feedback signal, etc.
Digital reference level is realized by configuring the number of digital inputs (parameters O36-046) for the operations of digital reference level (function code 11-13) and triggering the inputs

Step	$\begin{gathered} 0 \\ (\mathrm{H} 47) \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{H} 48) \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{H} 49) \end{gathered}$	$\begin{gathered} 3 \\ (H 50) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (H 51) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{H} 52) \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{H} 53) \end{gathered}$	$\begin{gathered} 7 \\ (\mathrm{H} 54) \end{gathered}$
Digital reference level								
Bit 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Bit 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Bit 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON

1 bit - Under multi-segment program running.
The"1 bit „parameter decides the direction of each segment speed.

Running Direction	Setting
forward	0
reverse	1

When running control mode $\mathbf{F 0 5}=0 / 1 / 2$, these parameters decide the direction of each segment speed. When running control mode $\mathbf{F 0 5}=3$, the setting value and terminal FWD/REV decide the direction of each segment speed together. FWD is prior.

FWD=1	REW =1	
Running direction	Running direction	Setting Value
forward	reverse	0
reverse	forward	1

10 bit - Unit of multi-segment speed program running time.

Running Time	10 bit	Range(e.g.H18~H25=3200.0)
*seconds	0	3200.0 seconds
*minutes	1	3200.0 minutes
*hours	2	3200.0 hours
*days	3	3200.0 days

100 bit, 1000 bit - Unit of acc/deceleration time of multi-segment speed program running

Acceleration	$\mathbf{1 0 0 0}$ bit,	Range(e.g.H26~H39=3200.
0)		
Deceleration	$\mathbf{1 0 0}$ bit	
*seconds	0	3200.0 seconds
*minutes	1	3200.0 minutes
*hours	2	3200.0 hours
*days	3	3200.0 days

H55	Multi-speed Status	1 bit	Current speed step	0-0xF	-	-	N
		10 bit	Current acceleration segment	0-0x7			
		100 bit	Current running time segment	$0-0 \times 7$			
		1000 bit	Current digit voltage segment	$0-0 \times 7$			

```
    0~16 segment, In hex, can be shifted t by o36~o46
10 bit - Current acceleration segment
    0~7 segment, in hex, can be shifted by o36~o46
100 bit - Current running time segment
    0~7 segment, in hex, can be shifted by o36~046, valid when program running
1000 bit - Current digital voltage segment
    0~7 segment, in hex, can by shifted by terminal o36~046
```


V/F Curve Group:U00-U15

| Code | Description / LCD | Setting Range | Unit | Factory
 Setting | Change
 Limited |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U00 | V/F - Frequency F1 | $0.00-$ U02 | Hz | 5.00 | N |
| U01 | U/F - Voltage V1 | $0.00-$ U03 | $\%$ | 10 | N |

User-defined the first frequency value of V / F curve, corresponding to V1.

U02	V/F - Frequency F2	U00 - U04	Hz	10	N
U03	U/F - Voltage V2	U01 - U05	$\%$	20	N
U04	V/F - Frequency F3	U02 - U06	Hz	15	N
U05	U/F - Voltage V3	U03 - U07	$\%$	30	N
U06	V/F - Frequency F4	U04 - U08	Hz	20	N
U07	U/F - Voltage V4	U05 - U09	$\%$	40	N
U08	V/F - Frequency F5	U06 - U10	Hz	25	N
U09	U/F - Voltage V5	U07 - U11	$\%$	50	N
U10	V/F - Frequency F6	U08 - U12	Hz	30	N
U11	U/F - Voltage V6	U09 - U13	$\%$	60	N
U12	V/F - Frequency F7	U10 - U14	Hz	35	N
U13	U/F - Voltage V7	U11 - U15	$\%$	70	N
U14	V/F - Frequency F8	U12 - Max Frequency	Hz	40	N
U15	U/F - Voltage V8	U15 - 100	$\%$	80	N

PID parameter: P00-P12

Code	Description / LCD	Setting Range			Unit	Factory Setting	Change Limited
P00	PID Configuration	1 bit	Unidirectional regulation	0	-	0000	N
		1 bit	Bidirectional regulation	1			
		10 bit	Negative effect	0			
			Positive effect	1			

When the inverter receives running command, it can control output frequency automatically in the PID regulation mode after comparing the setting signal and feedback signal from terminal.
The process is explained as following:

0) Negative action, when $\Delta>0$ is positive, frequency rises and when $\Delta<0$ is negative, frequency falls.

1) Positive action, when $\Delta>0$ is positive, frequency falls and when $\Delta<0$ is negative, frequency rises.

PID abnormity treatment:

1) Warning \& Continuous running - continue running g after abnormity feedback signal.
2) Warning \& Decelerating stop - decelerate and stop after abnormity feedback signal.
3) Warning \& Free stop - free stop after abnormity feedback signal

P01	PID Output Limit	0-100		\%	100	Y
P02	Feedback Signal Selection	Set frequency by keyboard or RS485	0	-	1	Y
		Al1 external analogy giving	1			
		AI2 external analogy giving	2			
		AI3 external analogy giving	3			
		Keyboard potentiometer giving	4			
		multi-step digital voltage giving	5			
		Digital pulse set	6			
P03	Setting Signal Selection	Set frequency by keyboard or RS485	0	-	2	Y
		Al1 external analogy giving	1			
		Al2 external analogy giving	2			
		AI3 external analogy giving	3			
		Keyboard potentiometer giving	4			
		Multi-step digital voltage giving	5			
		Digital pulse set	6			
P04	Keyboard Set Signal	0-100		\%	50	Y
When P03 is 0 , the setting pressure set by the keyboard. $0.0 \sim 100.0 \%$ is 0 to the maximum pressure respectively.						
P05	PID integral time	0.002-10.000		S	0.250	Y

The PID integral time determines the integral regulation speed, the regulation acts on the difference between PID feedback and setting value by PID regulator.
When the difference between PID feedback and setting value is 100%, integral regulator PID regulator output= (P01*F12*12.5\%) Hz (single direction PID regulation, ignores proportion and differential effect).
If the value is great, the control is stable but response is slow. If the value is little, the system response is rapid but perhaps surge occurs.

The parameter determines the regulation intensity, the regulation acts on the change ratio of the difference between PID feedback and setting value by PID regulator.
When the change ratio of the difference between PID feedback and setting value is 100% in the differential time, PID regulator regulates output to (P01*F12*12.5\%) Hz (single direction PID regulation, ignores proportion and integral effect).
If the value is great, the greater the intensity is, the system surge is to occur more easily.

P07	PID Proportion Gain	$0.0-1000.0$	$\%$	100.0

The PID Proportion Gain defines regulation intensity of PID regulator, the larger the P is, the more the intensity is. When proportion gain is 100%, and the difference between PID feedback and getting value is 100%, PID regulator's output is (P01*F12*12.5\%) Hz (single direction PID regulation, ignores differential and integral effect).
Proportion gain is the parameter decides PID regulator's response extent.
If the gain is great, the response is rapid, but if too great, the surge will occur. If the gain is little, the response will lag.

P08	PID Sampling Period	0.002-10.000	S	0.010	
Set Sampling period of feedback signal. When set this parameter small, the system response speed to the giving and feedback deviation is slow, but control is stable. When set this parameter low, the system response speed to the giving and feedback deviation is slow, but easy to cause vibration.					
P09	Deviation Limit	0.0-20.0	\%	5.0	Y
Deviation limit effects system control accuracy and stability. When the deviation of feedback signal and giving signal <deviation limit, PID N regulation, keep output stable. When the deviation of feedback signal and giving signal >deviation limit, PID regulates according to deviation, update output					
P10	PID Fault Detect Time	0.0-3200.0	S	0.0	N
P11	PID Fault Detected Value	0.0-100.0	\%	10.0	N

Set P10 to 0.0 for N fault inspection.
When PID feedback signal <P11 set PID fault inspection value, last P10 set time, regard it as PID regulation fault.

P12	PID Display Range	$0.00-100.00$	-	1.00	Y

A09 PID set value = PID set value(\%)*P12
A10 PID feedback value = PID feedback value(\%)*P12

If PID feedback 10V corresponding 4.0 MPa pressure, if need A09, A10 to display actual value, only need to set $\mathbf{P} 12=0.04$.

Speed-loop parameter: C00-C31

Code	Description / LCD	Setting Range	Unit	Factory Setting	Change Limited
C00	Filter Time Of Speed- loop	$2-200$	S	10	Y

It defines the filter time of the speed-loop. The range is $0.01 \sim 100$ s. If the value is too great, the control is stable but response is slow; if the value is too little, the system response is rapid but perhaps is unstable. So it is necessary to consider the stability and the response speed at the same time when setting the value.

C01	Speed-loop Low Speed Ti	$0.01-100.00$	s	0.25	Y

It defines the integral time of the speed-loop low speed. The range is $0.01 \sim 100.00 \mathrm{~s}$. If the integral time is too great, response is slow and the control of external disturbing signal become bad; if the time is too little, response is rapid, but perhaps brings the surge.

| C02 | Speed-loop Low Speed
 Td | $0.000-1.000$ | s | 0.000 |
| :---: | :---: | :---: | :---: | :---: | Y

It defines the differential time of the speed-loop low speed segment and the range is $0.000 \sim 1.000 \mathrm{~s}$. If the time is great enough, the surge which is caused by P action when difference occurring can attenuate quickly. But too great, the surge will happen contrary. When the time is little, the attenuation function is little too.

| C03 | Speed-loop Low Speed
 P | $0-150$ | $\%$ | 100 |
| :---: | :---: | :---: | :---: | :---: | Y

It defines the proportion gain of speed loop low speed segment. And the range is $0 \sim 1000 \%$.If the gain is great, the response is rapid, but too great, surge perhaps occurs; if the gain is too little, response is slower.

C04	Speed-loop Low Speed Shift Frequency	$0.0-\mathbf{C 0 8}$	Hz	7.00	Y

It defines low-speed loop switching frequency, the parameter and switching frequency at high-speed optimize Speed-loop PID parameter.

C05	Speed Loop High Speed Ti	$0.01-100.00$	s	0.5

It defines integration time of High-speed section of the speed loop. Range is $0.01 \sim 100.00 \mathrm{~s}$. Integration time too large and unresponsive, external interference control variation becomes weak. Integration time is small the reaction speed, oscillation occurs when it is too small.

C06	Speed Loop High Speed Td	$0.000-1.000$	s	0.000	Y

It defines the differential time of the speed-loop high speed segment and the range is $0.000 \sim 1.000 \mathrm{~s}$. If the time is great enough, the surge which is caused by P action when difference occurring can attenuate quickly. But too great, the surge will happen contrary. When the time is little, the attenuation function is little too.

C07	Speed Loop High Speed P	$0-150$	$\%$	75	Y

It defines the proportion gain of speed loop high-speed section, range from $0 \sim 1000 \%$. Gain is large, response speed, but too large gain will occur vibration; if the gain is small, the reaction lags.

C08	Speed Loop And High- speed Switching Fre- quency	C04-Max frequency	Hz	30.00
It defines Integral time of speed loop high speed, the parameter and switching frequency at low - speed optimize the speed-loop PID parameter				
C09	Low-speed Slip Gain	$0-200$	$\%$	100

Low-speed segment slip compensation gain

C10	Low Speed Slip Switching Frequency	O-C12			Hz	5.00	Y
Low speed segment slip compensation switching frequency							
C11	High Speed Slip Gain	0-200			\%	100	Y
High speed segment slip compensation gain							
C12	High Speed Slip Switching Frequency	C10-Max frequency			Hz	30.00	Y
High speed segment slip compensation switching frequency							
C13	Upper Froward Torque	0.0-300.0			\%	250.0	Y
The parameter is a ratio, setting value is 100%. Responding to motor rated output torque. Set forward torque mode through C15. In speed control mode, it's upper forward torque. In torque control mode, it's forward torque setting value.							
C14	Upper Reverse Torque	0.0-300.0			\%	250.0	Y
The parameter is a ratio setting value is 100%. Set reverse torque mode through C16. In speed control mode, it's upper reverse torque. In torque control mode, it's reverse torque setting value.							
C15	Forward Torque setting mode	1 bit	Set by keyboard or RS485	0	-	0000	Y
			Al1 external analogy giving	1			
			AI2 external analogy giving	2			
			AI3 external analogy giving	3			
			Keypad potentiometer giving	4			
			Multi-step digital voltage giving	5			
			Digital pulse set	6			
		10 bit	Direction uncontrolled	0			
			Direction controlled	1			
C16	Reverse Torque setting mode	1 bit	Set by keyboard or RS485	0	-	0000	Y
			Al1 external analogy	1			
			AI2 external analogy giving	2			
			Al3 external analogy giving	3			
			Keypad potentiometer giving	4			
			Multi-step digital voltage giving	5			
			Digital pulse set	6			
		10 bit	Direction uncontrolled	0			
			Direction controlled	1			
C17	Torque Set Gain	0.0-300.0			\%	200	Y

C15 1 bit - Setting mode
C16 1 bit - Setting mode

0	Set by keyboard or RS485	Responding to C13/C14
1	Al1 external analog set- ting	As per Al1 external analog setting
2	Al2 external analog set-	As per AI2 external analog

	ting	setting
3	Al3 external analog set- ting	As per AI3 external analog setting
4	Keyboard potentiometer setting	As per keyboard potenti- ometer setting
5	Multi segment digital voltage setting	As per multi segment digital voltage setting
6	Digital Pulse Setting	As per digital pulse setting

While the unit digital of $\mathrm{C} 15, \mathrm{C} 16$ is $1-6$, the torque up-limit of $\mathrm{C} 13, \mathrm{C} 14$ is for checking.

C15 10 bit - Direction Control

C16 10 bit - Direction Control

0) No control Direction - Direction is controlled by terminal or keyboard
1) Control Direction - Setting value of forward torque > setting value of reverse torque, forward direction. Setting value of forward torque < setting value of reverse torque, reverse direction.

C13 upper forward torque =setting value percentage * C17 torque given gain.
C14 upper reverse torque =setting value percentage * C17 torque given gain.
Such as:
C15 forward torque setting way=4 keyboard potentiometer setting.
C16 reverse torque setting way=4 keyboard potentiometer setting.
Forward/reverse both can control direction, C15 = 0x14, C16 = 0x14.
Potentiometer corresponding setting value A48 =-100\%, A49 = 100\%
Keyboard potentiometer set A47 = 100\%, C17 = 200.0\%
C13 forward torque up-limit=100\%*200.0\%=200.0\%, control direction forward 200\% torque
Keyboard potentiometer set $\mathbf{A 4 7}=100 \%, \quad \mathbf{C 1 7}=200.0 \%$
C14 reverse torque up-limit=100\%*200.0\%=200.0\%, control direction reverse 200% torque

C18	Speed/Torque Control	Speed control	0	-	0	Y
	Shift	Torque control	1			

F00 control method is to s select senseless vector control or sensor feedback close loop vector control, can change speed or torque control through input terminal. After setting IP terminal change, keyboard set invalid, only for query.

C19	Upper speed Setting mode	1 bit	keyboard or RS485 setting	0		0000	Y
			Al1 external analog setting	1			
			Al2 external analog setting	2			
			AI3 external analog setting	3			
			Keyboard potentiometer setting	4			
			Multi-segment digital voltage setting	5			
			Digital Pulse Setting	6			
		10 bit	C19 Unit bit setting	0			
			S00 Setting Frequency	1			
C20	Reverse Speed Limit	0 - Maximum Frequency			Hz	50	Y

While torque control, setting upper speed.

C19 1 bit - Separate setting mode

0	keyboard or RS485 set- ting	As per C20 setting
1	Al1 external analog set- ting	As per Al1 external analog setting
2	Al2 external analog set- ting	As per Al2 external analog setting
3	Al3 external analog set- ting	As per AI3 external analog setting
4	Keyboard potentiometer setting	As per keyboard potenti- ometer setting
5	Multi-step digital voltage setting	As per Multi-step digital voltage setting
6	Digital Pulse Setting	As per Digital Pulse Setting

While the unit digital of C19 is 1-6, the speed up-limit of C20 is for checking.

C19 10 bit - Select Speed Up-limit Setting Ways

0) Separate setting, as per the selection of C19 units digital.
1) Setting frequency is according to $\mathbf{S O O}$, and affected by the following parameters.

F02 frequency main setting ways / F03 frequency secondary setting ways / F04 frequency setting main and secondary.

| C21 | Torque Acceleration
 Time | $0.0-200.0$ | s | 1.0 |
| :---: | :---: | :---: | :---: | :---: | Y.

C21, C22 torque acceleration time, turning moment deceleration torque control mode and effective.
Torque acceleration time, torque accelerated from 0 to 300 hours. Torque speed, torque, from 300 down to 0 .

C23	Low Speed Excitation	$0-100$	$\%$	30	Y

Under low speed, compensate excitation quantity, increase torque feature, in case of meeting the requirement, try to make it lower, could reduce the motor heating up caused by magnetic path full.

$\mathbf{C 2 4}$	Current Loop Ti	$0-9999$	ms	500	Y

Define the current loop integral time. When integral time is too long, response is inactive; the ability to control external jamming becomes weak. When integral time is short, response is fast, if too short, vibration will occur.

C25	Current Loop P	$0-1000$

Y

Define current loop proportion gain, When select big gain, response fast, but too big will occur vibration. When select low gain, response lag.

Motor parameter: b00-b22

Code	Description / LCD	Setting Range	Unit	Factory Setting	Change Limited
b00	Motor 1 Rated Fre- quency	$0.00-$ Maximum Frequency	Hz	50.00	Y
b01	Motor 1 Rated Current	$\mathrm{y} 09^{*}(50 \% \ldots 100 \%)$	A	$*$	Y
b02	Motor 1 Rated Voltage	$100-1140$	V	$*$	Y
b03	Motor 1 Pole-pairs	$1-8$	-	2	Y
b04	Motor 1 Rated Speed	$500-5000$	$\mathrm{obr}_{\mathrm{min}}$	1480	Y
b00					

b00 ~ b04 are the motor's nameplate parameters which touch the precision. Set the parameters according to the motor's nameplate.
b00 ~ b04 motor nameplate in parameters, it is necessary to recalculate motor parameters by using b11. Excellent vector control performance requires exact motor parameters. Exact parameters are base on the correct setting of motor's rated parameters. To assure the control performance, please match the right motor as per the inverter's standard, motor rated currents limited between $30 \% \sim 120 \%$ of inverter rated current. The rated current can be set, but can't be more than the rated current of the inverter. The parameter confirms the OL protection capability of the motor and energy-saving running.
To prevent self-cooled motor form overheat when running in a low speed, and the motor capacity change when motor character change little, the user can correct the parameter to protect the motor.
The number of motor pole pairs, such as the four pole motor, the number of pole pairs is set to 2 .

b05	Motor 1 N Load Cur- rent	$0.0-\mathbf{b 0 1}$	A	$*$
$\mathbf{b 0 6}$	Motor 1 Stator Resis- tance	$0.000-30.000$	Ω	$*$
$\mathbf{b 0 7}$	Motor 1 Rotor Resis- tance	$0.000-30.000$	Ω	$*$
$\mathbf{b 0 8}$	Motor 1 Stator Induc- tance	$0.0-3200.0$	mH	$*$
$\mathbf{b 0 9}$	Motor 1 Mutual Induc- tance	$0.0-3200.0$	mH	$*$

b05 ~ b09 can by input by motor actual parameters value, also can define motor parameter by b11 parameter measure function. And save automatically. If know the correct motor parameter, can input by hand. When b11 is 1 , 2,3 , the system calculates and measures automatically.
b05 ~ b09 is the motor's basic electric parameters, these parameters is essential to achieve vector control calculation.

The system can select any group motor parameters. Motor parameter measurements modify and save to corresponding motor parameter area automatically.

b11	Motor Parameter Measurement	No measurement	0	-	0	N
		calculate by label data	1			
		inverter static measurement	2			
		inverter rotation measurement	3			

Set whether the measurement of electrical parameters in order to b10 motors choose motor 1 as an example.
0) No measurement

1) Calculate by label data

According to the motor nameplate parameters b00 ~ b04, automatic calculation b05 ~ b09 and other electrical parameters, the advantage does not require power-on self tuning, suitable for general-purpose Y series of four pole motor, the other type motor can be adjusted based on this parameter.

2) Inverter static measurement

If the motor parameters cannot be measured without load, you can choose static frequency converter measurement. Make sure that motor in a static status, after static measurement, it can be manually adjusted some parameters, optimal control.
The b11 is set to 2, the inverter automatically start parameter determination.
Keyboard figures area show "-RUN": waiting to run the command, start the measurement.
Keyboard figures area show "CAL1", inverter without output.
Keyboard figures area show "CAL2", inverter with output, static state.
Keyboard figures area show "-END": measuring ends.
Keyboard figures area show "E. CAL": the measurement process errors.
Process can be measured through the STOP key to stop.

3) Inverter rotation measurement

Motor can be measured without load, can choose the rotation measurement. Measurements started, make sure the motor is static.
Static measurement converter, the output DC voltage, pays attention to safety.
The b11 is set to 3, the inverter automatically start parameter determination.
Keyboard figures show that the regional show "-RUN": waiting to run the command, start the measurement.
Keyboard figures area show "CAL1", "CAL3": N output inverter.
Keyboard figures area show "CAL2", inverter with output, under static state.
Keyboard figures area show "CAL4", inverter with output, the motor forward in high-speed.
Keyboard figures area show "-END": measuring the end.
Keyboard figures area show "E. CAL": the measurement process errors.
Process can be measured through the STOP key to stop.
Set this parameter, the motor parameters will be determined dynamically. Be sure the motor is without load (N-load operation).
Before setting, be sure to run well prepared, the motor will run in high speed during the measurement
Measurement is completed, b11 return to 0 . The measured parameters will select parameters on the base of b10 motor parameters which is automatically saved to the b05 ~ b09 or b18 ~ b22.
Note: Before auto-measure the motor parameter, must input motor rated parameter b00~b04or b13~17 correctly
Please regulate accelerating and deceleration time or torque increasing parameter, if there is over - current or over voltage faults while auto- measurement.
When automatic regulation, motor should be in stop status.

b12	Vector Control initial	Not inspection R1	0	-	+	N
	Inspection R1	Inspection R1	1			
b13	Motor 2 Rated Frequency	0.00~Maxmum frequency		Hz	50.00	T
b14	Motor 2 Rated Current	y09*(50\%~100\%)		A	*	T
b15	Motor 2 Rated Voltage	100~1140		V	*	T
b16	Motor 2 Pole Pairs	1~8		-	2	T
b17	Motor 2 Rated Speed	500~5000		rpm	1480	T
b18	Motor 2 N Load Current	0.0~b14		A	*	T

$\mathbf{b 1 9}$	Motor 2 Stator Resis- tance	$0.000-30.000$	Ω	$*$
$\mathbf{b 2 0}$	Motor 2 Rotator Resis- tance	$0.000-30.000$	T	
$\mathbf{b 2 1}$	Motor 2 Stator Induc- tance	$0.0-3200.0$	mH	$*$
$\mathbf{b 2 2}$	Motor 2 Mutual Induc- tance	$0.0-3200.0$	mH	$*$

The 2nd group motor parameters can be set by system. The definition is same with group 1.

System parameter: y00-y17

Code	Description / LCD	Setting Range		Unit	Factory Setting	Change Limited
y00	Reset System Parameter	No action	0	-	0	N
		Reset system parameter with keyboard storage1	1			
		Reset system parameter with keyboard storage 2	2			
		Reset system parameter with keyboard storage 3	3			
		Reset system parameter with keyboard storage 4	4			
		Reset system parameter with factory set value	5			

0) No action
1) Reset system parameter with keyboard storage 1
2) Reset system parameter with keyboard storage 2
3) Reset system parameter with keyboard storage 3
4) Reset system parameter with keyboard storage 4
5)Reset system parameter with factory set value

When this parameter set valid, all the function parameter reset to factory setting. The parameters without factory setting will save the previous setting value.

y01	Parameter Upload To Keyboard	No action	0		0	N
		Reset system parameter with keyboard memory area1	1			
		Reset system parameter with keyboard memory area2	2			
		Reset system parameter with keyboard memory area3	3			
		Reset system parameter with keyboard memory area4	4			
		Clear up keyboard memory area 1, 2, 3, 4	5			
y02	Latest Fault record	0-4		-	0	Y
y03	Fault Record 1	Press [PRG] and $[\boldsymbol{\Delta} / \boldsymbol{\nabla}$] key the frequency, current and running status of fault time can be known.		-	0	Y
y04	Fault Record 2					
y05	Fault Record 3					
y06	Fault Record 4					
y07	Fault Record 5					

These parameters register fault which happen in the last several times, and can inquire about the value of monitor
object at the time of fault by 'PRG' and "plus or minus" key.
The monitor object of fault state:
0) Fault type

The fault code is expressed as following:

Serial number	LED display	Fault
0	E.OCP	System is disturbed or impacted by instant over current
1	Reserved	
2	E.OC3	Over current or over voltage signal from drive circuit.
3	Reversed	
4	E.OU	Over voltage
5	E.LU	Under voltage
6	E.OL	Over load
7	E.UL	Under load warm
8	E.PHI	Power input Phase loss
9	E.EEP	EEPROM error
10	E.ntC	Over heat
11	E.dAt	Time limit fault
12	E.Set	External fault
13	Reserved	
14	Reserved	
15	Reserved	
16	E.PID	PID regulate fault
17	E. OHt	Motor over heat fault
18	E.OL2	Motor over load fault
19	E.PG	PG fault
20	E.Pho	Inverter output phase-lost
21	E.COA	RS485 communication terminal A failure

22	E.Cob	RS485 communication terminal B failure
23	E.CAL	Parameter identification problems.

1) Set frequency at the time of fault

The output frequency of the inverter at the time of fault
2) Output frequency at the time of fault

The output frequency of the inverter at the time of fault
3) Output current at the time of fault

The actual output current at the time of fault
4) Output DC voltage at the time of fault

The actual output voltage at the time of fault
5) Running state at the time of fault

The running state at the time of fault

LED display is below

The first LED		The second LED		The third LED	the fourth LED	
F	forward command	F	forward status		A	accele- rating
R	Reverse command	R	Reverse status		D	deccele- rating
S	Stop command	S	Stop sta- tus		E	running in a even speed
			S	Stop status		

6) running time at the time of fault

The running time at the time of fault
7) Inverter IGBT temperature at the time of fault

Inverter IGBT temperature

y08	Fault Record Reset	No action	0	-	0	Y
		Reset	1			

0) No action, the fault records retains
1) the fault records resets

y09	Rated Output Current	$0.1-1000.0$	A	$*$
y10	Rated Input Voltage	$100-1140$	N	$*$
y11	Product Series	-	$*$	N
y12	Software Version	-	$*$	N
y13	Product Date - Year	-	$*$	N
y14	Product Date - Month/Day	-	$*$	N
y15	User Decode Input	$0-9999$	-	-

In the state of locked parameter, LED displays the times of error input. There are three input limit, if input is wrong in continuous three times, the systems will prohibit input of the password. It can prevent testing password in an illegal way, and need restart the machine to input again.
Once the input is right in any time during three times input limit, the parameter is unlocked.

y16	User password key-in	$0-9999$	-	-	Y

The parameter sets the password, and the range is $0 \sim 9999$. After setting the password, parameter locks and keyboard displays "code"; if the password is unlocked or password input is right, the keyboard will display "deco".
Set password to 0 , reset user password set, after re-electrify status is decode.

Part 5 - Fault Diagnosis \& Solutions

Problems and solutions - error codes

Problems	Possible causes	Solutions
Keyboard cannot control	Running control mode setting is wrong	Check F05
	Frequency setting is wrong	Check F03, F04
Potentiometer can't regulate speed	Control mode setting is wrong	Check F05
	Frequency setting is wrong	Check F03, F04
The motor	LED monitor display fault	Press RESET or terminal for fault reset, learn and fix the fault according to the fault info
Does not rotate	No voltage in terminals DC+1 and DC+2	Check the voltage at R, S or T and charging circuit.
	U, V or W terminals produce No	Check the control mode and frequency parameter. Check the terminal condition if it is operat-

	output or abnormal output.	ed by an external terminal.
	Re-start after powering down or free run	Remember the set operating state.
	Too much load on the motor	Check the load condition, and confirm the model selection is right
Over current E.OC	Fault display E.OCP	System is disturbed or instant over current
	Fault display E.OC3	Motor over current, protect action when motor actual current is 3 times over than the motor rated current
	Over current during acceleration	Reset or adjust F09, F20, and F21.
	Over current during deceleration	Reset or adjust F10, F22, and F23.
	During starting, the low-frequency jitter over-current	Modify F06 setting
	Over current during operation	Check the load change and eliminate it.
	Over current during starting or operation sometime	Check if there is slight short circuit or grounding.
	Disturbance	Check the earthling wire, screened cable grounding and terminals.
Over load E.OL	Too much load	Lower the load. Or enlarge b04, b14 in the allowable load range or enlarge A24 to raise the thermal protection level.
	Inappropriate parameter is set	Modify b04, b14 in case of the motor over load allowed
Over voltage E.OU	Power voltage exceeds the limit	Check voltage is right or not. Frequency inverter rated voltage setting is Y or N.
	Too fast deceleration	Modify F10.
	The load has too much inertia	Reduce the load inertia, or raise the capacity of frequency converter, or add a braking resistor.
Low voltage E.LU	Too low power voltage	Checking voltage is normal or not. Frequency inverter rated voltage setting is Y or N .

| Power off transiently Add options of capacitor boxes.
 The line has too small capacity or
 great rush current exists on the
 lines. Make renovation on power supply system.
 Too high ambient temperature Improve ambient conditions
 Cooling fans do not work. Check A27, reduce fan starting temperature
 (when there is fan control)
 The carrier frequency is too high Check the setting value of function F16 |
| :--- | :--- | :--- |

After switching off the supply voltage to the inverter internal circuit voltage may still be life threatening. To prevent electric shock, wait at least 5 minutes after the power is turned off and extinguish the lights on the operator.
Static electricity accumulated in the body can be a major threat to the inverter electronics. To avoid the risk of damaging the inverter, do not touch your hands PCBs and electronic components inside the case.

Part 6 - Specification

Items		Specifications		
Power	Voltage and frequency	Single-phase 200~240V, 50/60Hz Three-phase $380 \sim 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$		
	Allowable Fluctuation range	voltage: $\pm 15 \%$ frequency: $\pm 5 \%$		
Control	Control system	high performance vector control inverter based on 32 bit DSP		
	Output frequency	$0.00 \sim 800.0 \mathrm{~Hz}$, maximum frequency can be set between 10.00 and 800.0Hz		
	control method	V/F control	Sensor less vector contro	Sensor close loop vector control
	Start torque	$\begin{aligned} & \text { 0.50Hz } \\ & 180 \% \end{aligned}$	0.25Hz 180\%	0.00Hz 180\%
	speed adjustable	1: 100	1: 200	1:2000

Running	range			
	Speed stabilizing precision	$\pm 0.5 \%$	$\pm 0.2 \%$	$\pm 0.02 \%$
	waveform produce methods	Asynchronous space vector PWM, N-class sub-synchronous space vector PWM, two-phase optimization of space vector PWM.		
	Auto torque boost function	Achieve low frequency $(1 \mathrm{~Hz})$ and high output torque control under V.F control mode.		
	Accelerate /decelerate control	Sub-set S curve acceleration and deceleration mode, maximum acceleration and deceleration time is 3200 days		
	Long running time control	16 segments speed run, maximum running time is 3200 days		
	frequency setting accuracy	Digit: $0.01 \mathrm{~Hz}($ below 300 Hz$), 0.1 \mathrm{~Hz}($ above 300 Hz); analogue: 1% of maximum frequency		
	frequency accuracy	Speed control tolerance $0.01 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$.		
	V/F curve mode	Linear, 1.2 times the power, 1.7 times the power, 2 times power, user-set $8 \mathrm{~V} / \mathrm{F}$ Curve.		
	Over load capability	150\% rated current -1 minute, rated current 200\% -0.1 second		
	slip compensation	V / F control can automatically compensate for deterioration.		
	Running method	Keyboard/terminal/communication		
	Starting signal	Forward, reverse, jog (parameter control direction), forward jog, and reverse jog.		
	Emergency stop	Interrupt controller output.		
	fault reset	When the protection function is active, you can automatically or manually reset the fault condition.		
	Running status	Motor status display, stop, acceleration and deceleration, constant speed, the program running.		
	DC brake	Built-in PID regulator brake current flow in the premise, however, to ensure adequate braking torque.		
Protection	Inverter protection	Overvoltage protection, under voltage protection, over current protection, overload protection, over-temperature protection, over the loss of speed protection, over-voltage stall protection, phase protection (optional), external fault, communication error, PID feedback		

domestic and industrial automation

		output voltage, output current, running state, running time, IGBT temperature.
Commu- nication	Double RS485 port	Rs485 port and an optional keyboard completely isolated RS485 communication module.
	CAN BUS	Can select can-bus module.
Speed	16 -segment speed	At most 16 segments can be set (use multi-functional terminal to shift or program runs).
	8 -segment running time	At most8segment running time can be set(multi-functional terminal can be used to shift)
	8 segment acceleration speed	At most 8 acceleration speeds (can use the multi-functional terminal to switch).
	Seven-Segment Speed Configuration	At most 7 segment speed configuration can be set (multi-functional terminal can be used to switch).
PID	PID feedback signal	Six kinds of ways, keyboard, three way analog input, pulse input, digital potentiometers.
	PID giving signal	Six kinds of ways, keyboard, three way analog input, pulse input, digital potentiometers.
Motor	2 groups of motor parameters	With the motor parameters, parameter can be selected, parameter identification automatic storage.
	3 identification method	Name plate calculation, static measurement, rotation measurements.
	5 name plate parameters	Rated frequency, rated current, rated voltage, the number of pole pairs, rated speed.
	5 identification parameters	N-load current, stator resistance, rotor resistance, stator inductance, mutual inductance.
Environment	Environment temperature	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}, 40 \sim 50^{\circ} \mathrm{C}$ derating between the use is increased by 1 ${ }^{\circ} \mathrm{C}$, rated output current decrease of 1%.
	Store temperature	$-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
	Environment humidity	5~ 95%, No condensation
	Height•vibration	0 ~ 2000 meters, 1000 meters above derating use, increased by 100 m , rated input decreased\%
	Application location	Mounted vertically inside the control cabinet with good ventilation, do not allow the level, or other installation method. The cooling

		medium is air. Installed in the absence of direct sunlight, N dust, N corrosive and explosive gas, N oil mist, N steam, N drip environment
	Cooling method	Forced air cooling and natural air cooling.

Types table

Type	Input Voltage	Input Current	Output Voltage	Output Current	Load	Pict.
	\mathbf{V}	\mathbf{A}	\mathbf{V}	\mathbf{A}		
FA-1L007	$1 \times 230 \mathrm{~V}$	9 A	$3 \times 230 \mathrm{~V}$	4 A	$\mathbf{0 . 7 5 k W}$	Pict. 9
FA-1L015	$1 \times 230 \mathrm{~V}$	17.5 A	$3 \times 230 \mathrm{~V}$	7 A	$\mathbf{1 . 5 k W}$	Pict. 9
FA-1L022	$1 \times 230 \mathrm{~V}$	24 A	$3 \times 230 \mathrm{~V}$	10 A	$\mathbf{2 . 2 k W}$	Pict. 10
FA-1L040	$1 \times 230 \mathrm{~V}$	36 A	$3 \times 230 \mathrm{~V}$	16 A	$\mathbf{4 . 0 k W}$	Pict. 10
FA-3H007	$3 \times 400 \mathrm{~V}$	3.3 A	$3 \times 400 \mathrm{~V}$	2.5 A	$\mathbf{0 . 7 5 k W}$	Pict. 9
FA-3H015	$3 \times 400 \mathrm{~V}$	5 A	$3 \times 400 \mathrm{~V}$	3.7 A	$\mathbf{1 . 5 k W}$	Pict. 9
FA-3H022	$3 \times 400 \mathrm{~V}$	7 A	$3 \times 400 \mathrm{~V}$	5 A	$\mathbf{2 . 2 k W}$	Pict. 9
FA-3H040	$3 \times 400 \mathrm{~V}$	11 A	$3 \times 400 \mathrm{~V}$	8.5 A	$\mathbf{4 . 0 k W}$	Pict. 8
FA-3H055	$3 \times 400 \mathrm{~V}$	16.5 A	$3 \times 400 \mathrm{~V}$	13 A	$\mathbf{5 . 5 k W}$	Pict. 10
FA-3H075	$3 \times 400 \mathrm{~V}$	20 A	$3 \times 400 \mathrm{~V}$	16 A	$\mathbf{7 . 5 k W}$	Pict. 11
FA-3H110	$3 \times 400 \mathrm{~V}$	28 A	$3 \times 400 \mathrm{~V}$	25 A	$\mathbf{1 1 k W}$	Pict. 11

Assembly Drawings

Pict. 9) 1-phase inverter to $\mathbf{1 . 5 \mathrm { kW }}$ and 3-phase inerter to $\mathbf{2 . 2 \mathrm { kW }}$

Pict. 10) 1-phase inverter $\mathbf{2 . 2 - 4 k W}$ and 3-phase inverter 4-5.5kW

Pict. 11) 3-phase inverter $7.5-11 \mathrm{~kW}$

Pict. 12) Operating panel

Braking Unit

There is braking unit inside when using " B " type frequency converter, the maximum braking torque is 50%. Please choose braking resistor according to the following table:

In no case you use resistors with less resistance, and less powerful than that shown in the table below. Failure to do so may result in damage to the inverter and there is danger of fire

Type	Power	Braking resitor	Resistor Power
	kW	$\boldsymbol{\Omega}$	\mathbf{W}
FA-1L007	0.75 kW	200	120
FA-1L015	1.5 kW	100	300
FA-1L022	2.2 kW	70	300
FA-1L040	4 kW	40	500
FA-3H007	0.75 kW	750	120
FA-3H015	1.5 kW	400	300
FA-3H022	2.2 kW	250	300
FA-3H040	4 kW	150	500
FA-3H055	5.5 kW	100	500
FA-3H075	7.5 kW	75	800
FA-3H110	11 kW	50	1000

