Low Power Bipolar Transistor

multicomp PRO

- 1. Emitter
- 2. Base
- 3. Collector

Features:

· NPN Silicon Planar Switching Transistors

Applications:

· High speed saturated switching applications

Absolute Maximum Ratings:

Description	Symbol	Value	Unit	
Collector Base Voltage	V _{CBO} 40			
Collector-Emitter Voltage	V _{CES}	40	V	
Collector-Emitter Voltage	V _{CEO}	15	V	
Emitter-Base Voltage	V _{EBO}	4.5		
Collector Peak Current (t = 10µs)	I _{CM}	0.5	А	
Power Dissipation at $T_a = 25^{\circ}C$ $T_C = 25^{\circ}C$	P _{tot}	0.36 1.2	W	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +120	°C	

Thermal Resistance

Junction to Case	R _{th (j-c)}	146	°C/W
Junction to Ambient	R _{th (j-a)}	486	C/VV

Low Power Bipolar Transistor

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

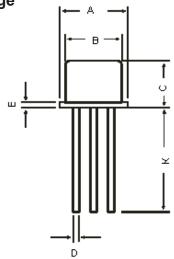
Parameter	Symbol	Test Condition	Min.	Max.	Unit		
	I _{CBO}	V _{CB} = 20V, I _E = 0		400	nA		
		$V_{CB} = 20V, I_{E} = 0,$ $T_{a} = 150^{\circ}C$		30	μA		
Collector Cut off Current	I _{CES}	$V_{CE} = 15V, V_{BE} = 0,$ $T_{a} = 55^{\circ}C$	-	400	nA		
	CLS	$V_{CE} = 40V, V_{BE} = 0$		1	μΑ		
	I _{CEX}	$V_{CE} = 15V, V_{BE} = -3V,$ $T_{a} = 55^{\circ}C$		600	nA		
Emitter Cut off Current	I _{EBO}	$V_{EB} = 4.5V, I_{C} = 0$		10	μΑ		
Base-Cut off Current	I _{BEX}	$V_{CE} = 15V, V_{BE} = -3V,$ $T_{a} = 55^{\circ}C$	-	600	nA		
Collector Emitter (sus) Voltage	V _{CER (Sus)} *	$I_C = 10$ mA, $R_{BE} = 10\Omega$	20	-			
Collector Emitter Voltage	V _{CEO} *	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$	15				
	V _{CE (Sat)} *	I _C = 10mA, I _B = 1mA		0.25			
Collector Emitter Saturation Voltage		I _C = 100mA, I _B = 10mA	-	0.6	V		
		$I_{\rm C} = 10 \text{mA}, I_{\rm B} = 0.3 \text{mA}$		0.3			
Base Emitter On Voltage	V _{BE (on)} *	$I_{C} = 30\mu A, V_{CE} = 20V,$ $T_{a} = 100^{\circ}C$	0.35	-			
Base Emitter Saturation Voltage	V _{BE (Sat)} *	I _C = 10mA, I _B = 1mA	0.7	0.85			
Base Emilier Saturation voltage		I _C = 100mA, I _B = 10mA	-	1.5			
	h _{FE} *	I _C = 10mA, V _{CE} = 1V	40				
DC Current		h ₌₌ *	h ₌₌ *	$I_{\rm C}$ = 100mA, $V_{\rm CE}$ = 2V	20	_	_
		$I_{C} = 10 \text{mA}, V_{CE} = 1 \text{V},$ $T_{a} = -55 ^{\circ}\text{C}$	20				

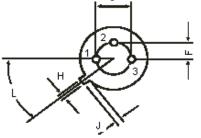
Dynamic Characteristics

Transition Frequency	f _t	V _{CE} = 10V, I _C = 10mA	500	-	MHz
Collector Base Capacitance	Cbo	$I_{E} = 0, V_{CB} = 5V$		4	5 E
Emitter Base Capacitance	Cebo	I _C = 0, V _{EB} = 1V	_	4.5	pF
Storage Time	t _s	$I_C = 10\text{mA}, V_{CC} = 10\text{V},$ $B_1 = -I_{B2} = 10\text{mA}$		13	ns

^{*}Pulsed: Pulse Duration = 300µs, Duty Cycle = 1%

Low Power Bipolar Transistor




Electrical Characteristics: (T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min.	Max.	Unit
Dynamic Characteristics					
Turn on Time	t _{on}	$I_{C} = 10 \text{mA}, V_{CC} = 3 \text{V},$ $I_{B1} = 3 \text{mA}$	_	12	
Turn on Time		$I_{\rm C}$ = 100mA, $V_{\rm CC}$ = 6V, $I_{\rm B1}$ = 40mA		7	20
Turn off Time	t _{off}	$I_C = 10 \text{mA}, V_{CC} = 3 \text{V},$ $I_{B1} = 3 \text{mA}, I_{B2} = -1.5 \text{mA}$		18	ns
		$I_{C} = 100 \text{mA}, V_{CC} = 6 \text{V},$ $I_{B1} = 40 \text{mA}, I_{B2} = -20 \text{mA}$	_	21	

^{*}Pulsed: Pulse Duration = 300µs, Duty Cycle = 1%

TO-18 Metal Can Package

Dilli.	IVIIII.	IVIAX.	
Α	5.24	5.84	
В	4.52	4.97	
С	4.31	5.33	
D	0.4	0.53	
Е	-	0.76	
F	-	1.27	
G	-	2.97	
Н	0.91	1.17	
J	0.71	1.21	
K	12.7	-	
L	45°		

Dimensions: Millimetres

1. Emitter

- 2. Base
- 3. Collector

Part Number Table

Description	Part Number		
Transistor, NPN, TO-18	BSX20		

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

