

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶): (日期): 2014-07-23

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : GF SERIES 105℃

VERSION (版本) : 01

Customer P/N :

SUPPLIER :

SUPPLIER					
PREPARED (拟定)	CHECKED (审核)				
李雪妮	潘素清				

CUSTOMER				
APPROVAL (批准)	SIGNATURE (签名)			

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		SPECIFICAT	ALTERNA R	ATION HIST ECORDS	ORY		
		GF SERIE	S	T			T
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver

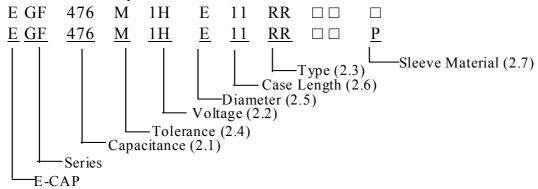
Issued-date: 2013-10-7	Name	Specification Sheet – GF			
Version	01		Page	1	
STANDARD MANUAL					

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

CONTENTS **Sheet** Application 3 1. 2. Part Number System 3 3. Construction 4 4. Characteristics 5~12 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $tan \delta$ 4.5 Impedance 4.6 Terminal strength 4.7 Temperature characteristic 4.8 Load life test 4.9 Shelf life test 4.10 Surge test 4.11 Vibration 4.12 Solderability test 4.13 Resistance to solder heat 4.14 Change of temperature 4.15 Damp heat test 4.16 Vent test 4.17 Maximum permissible (ripple current) 5. Product Dimensions, Impedance & Maximum Permissible Ripple 13~20 Current 6. Forming Dimension 21 7. Taping Dimension 22~24 8. List of "Environment-related Substances to be Controlled ('Controlled 25 Substances')" Attachment: Application Guidelines 26~31

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	2
STANDARD MANUAL				


ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	475	476	477	478
Capacitance (µF)	4.7	47	470	4700

2.2 Rated voltage code

Code	0J	1A	1C	1E	1V	1H	1J	2A
Rate Voltage (V.DC)	6.3	10	16	25	35	50	63	100

2.3 Type

Code	RR	TU	TV	TC	TE	CB	CA	CC	CE	NB	PB
Reference	Bulk	Taping Spec.				F	ormin	g Spe	С		

2.4 <u>Capacitance tolerance</u>

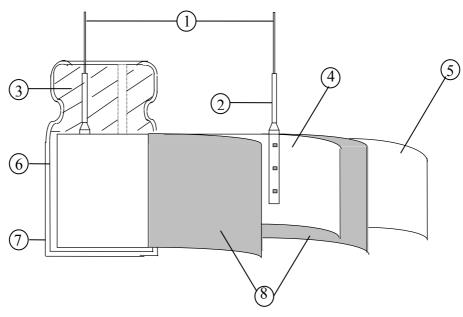
"M" stands for $-20\% \sim +20\%$

2.5 <u>Size</u>

Code	D	E	F	G	I
Diameter	5	6.3	8	10	12.5

2.6 Length

2.7 Sleeve material


Code	P	Blank
Sleeve material	PET	PVC

Remark: The " \square " in fifteenth and sixteenth digits is used for the product lines, and the " \square " in the seventeenth digit is used to indicate that the sleeve is the PVC material.

Issued-date: 2013-10-7	Name	Specification Sheet – GF			
Version	01		Page	3	
STANDARD MANUAL					

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material		
1	Lead Line	Tinned CP wire (Pb Free)		
2	Terminal	Aluminum wire		
3	Sealing Material	Rubber		
4	Al-Foil (+)	Formed aluminum foil		
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil		
6	Case	Aluminum case		
7	Sleeve	PVC/PET		
8	Separator	Electrolyte paper		

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	4
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is

as follows:

Ambient temperature :15°C to 35°C Relative humidity : 45% to 85% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40° C to 105° C(6.3 \sim 100WV).

As to the detailed information, please refer to table 1

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	5
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	ITEM			P	ERFORI	MANCE	2			
	Rated voltage	WV (V.DC)	6.3	10	16	25	3:	5 5	50	63
	(WV)	SV (V.DC)	8	13	20	32	44	4 6	53	79
4.1				1						
	Surge voltage	WV (V.DC)	100							
	(SV)	SV (V.DC)	125							
	Nominal	<condition></condition>		1201	1 1011	т				
4.0	capacitance	Measuring From Measuring Vo.			$\mathrm{Hz}\pm12\mathrm{Hz}$	ız ıan 0.5V	rms			
4.2		Measuring Te < Criteria >	mperatur	e : 20 ±	=2℃					
	(Tolerance)	Shall be within	the spec	ified cap	acitance	tolerand	ce.			
4.3	Leakage current	Connecting the minutes, and the Criteria (6.3~100WV) I: Leakage cur C: Capacitanc V: Rated DC V	Connecting the capacitor with a protective resistor $(1k\Omega \pm 10\Omega)$ in series for 2 minutes, and then, measure Leakage Current. Criteria> $(6.3\sim100\text{WV})$: $I(\mu \text{ A}) \leq 0.01\text{CV}$ or $3(\mu \text{ A})$ whichever is greater I: Leakage current $(\mu \text{ A})$ C: Capacitance $(\mu \text{ F})$ V: Rated DC Working Voltage (V)							
		<condition> See 4.2, Norm <criteria></criteria></condition>	Capacita	ance, for	measuri	ng frequ	ency, vo	ltage and	l tempera	ature.
		Working volt	age (v)	6.3	10	16	25	35	50	63
4.4	tan δ	tan δ (ma	x.)	0.22	0.19	0.16	0.14	0.12	0.10	0.09
		Working vol	tage (v)	10	0					
		tan δ (ma	ax.)	0.0	8					
			e value >	1000 μ F	, add 0.0)2 per an	other 10	00 μ F.		
4.5	Impedance	For capacitance value >1000 µ F, add 0.02 per another 1000 µ F. <condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the le <criteria></criteria></condition>							ad wire	

Issued-date: 2013-10-7	Name	Specification Sheet – GF							
Version	01		Page	6					
	STANDARD MANUAL								

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		± 1 seconds. Bending Strength of Tention Fixed the capacitor, ap	minals object force to 2~3 seconds onds.	to bent the ts, and then b	in lead out direction for the terminal (1~4 mm from the term it for 90° to its original)	
4.6	Terminal	Diameter of lead wire		ile force N (kgf)	Bending force N (kgf)	
4.6	strength	0.5mm and less		5 (0.51)	2.5 (0.25)	
		Over 0.5mm to 0.8mm		0 (1.0)	5 (0.51)	
		<condition> STEP Testing Temporal</condition>	erature(°C)	Time		
		1 20±			ch thermal equilibrium	
		2 -40(-25)		Time to reach thermal equilibrium Time to reach thermal equilibrium		
		$\begin{array}{ c c c c c }\hline 3 & 20 \pm \\\hline 4 & 105 \pm \\\hline \end{array}$		Time to reach thermal equilibrium Time to reach thermal equilibrium		
		5 20±			ch thermal equilibrium	
4.7	Temperature characteristic	 <criteria></criteria> a. At +105°C, capacitance of its original value at tan δ shall be within the The leakage current means value. b. In step 5, tan δ shall be The leakage current shall be as a shall be the leakage current shall be the content of the content of the leakage current shall be the content of the content of	+20°C. e limit of Ite easured sha within the	em 4.4 all not more t	han 8 times of its specifie	

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	7
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		c. At-40°C (-25°C), imp		1			T		table
		Working Voltage (V	7) 6.3	10	16	25	35	50	
		Z-25°C/Z+20°C	4	3	2	2	2	2	
		Z-40°C/Z+20°C	8	6	4	3	3	3	
4.7		Working Voltage (V	7) 63	100	1				
		Z-25°C/Z+20°C	2	2					
		Z-40°C/Z+20°C	3	3	-				
		Capacitance, $\tan \delta$, a	_		e measure	d at 120F	łz.		
	Load	<condition> According to IEC6 temperature of 105 2000+48/0(φ D, φ) (φ D≥ φ 12.5) hou rated working volta time at atmospheric</condition>	°C ± 2 with $5 \sim \Phi$ 6.3) hours. (The sumage) Then the	DC bias vars, 3000 of DC and product s	roltage plu +48/0 (ф ad ripple p should be	Is the rate D, φ8~ α beak volta tested af	ed ripple of 10) hounge shall notes that the shall notes that the shall notes the shall note that the shall not the shall no	current for rs, 4000- not exceed urs recov	+48/ed th
4.8	life test	Criteria> The characteristic sh Leakage current Capacitance Chan tan δ Appearance	Value ge Within Not m	following in 4.3 shan $\pm 25\%$ core than 1 shall be n	all be satisfied initial of the satisfied of the satisfie	sfied value. ne specifi			
		<condition> The capacitors are the</condition>	on stored wi	th no volt	ogo opplic	nd at a ta	mnorotur	a of 105 -	⊥ າ °
4.9	Shelf life test	for 1000+48/0 hours Following this perio allowed to stabilized Next they shall be co voltage applied for 3 tested the characteris < Criteria> The characteristic sh Leakage current Capacitance Chan tan δ Appearance Remark: If the capa	d the capacit l at room tem connected to a 30min. After stics. all meet the Value ge Within Not m There	ors shall I perature f series lim which the following in 4.3 shand $\pm 25\%$ core than 1 shall be nored more	be remove for 4~8 ho niting residence capacito requiremall be satist of initial solution of the oleakage than 1 ye	ed from tours. stor(1k± rs shall b ents. sfied value. e specifie of electr ar, the lea	he test ch 100 Ω) we e discharged ed value. olyte. akage cur	rith D.C. ged, and	rate ther

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	8
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

4.10	Surge test	
4.11	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz Peak to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30° 4mm or less Within 30°

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	9
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

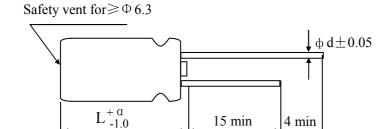
		After the test, the follow	wing items shall be tested:
		Inner construction	No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
		<condition></condition>	
		_	sted under the following conditions:
		Soldering temperature	: 245±3°C
		Dipping depth	: 2mm
		Dipping speed	: 25±2.5mm/s
		Dipping time	: 3±0.5s
4.12	Solderability	<criteria></criteria>	
	test	Coating quality	A minimum of 95% of the surface
		Coating quality	being immersed
		-	or shall be immersed into solder bath at
		Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec	onds or $400 \pm 10^{\circ}\mathrm{C}$ for 3 $^{+1}_{-0}$ seconds to 1.5~2.0mi
		Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capacitor the capacitor shall	onds or $400\pm10^\circ\!\!\mathrm{C}$ for 3^{+1}_{-0} seconds to $1.5\!\!\sim\!\!2.0$ m tor .
		Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capacit	onds or $400\pm10^\circ\!\!\mathrm{C}$ for 3^{+1}_{-0} seconds to $1.5\!\!\sim\!\!2.0$ m tor .
	Resistance to	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shall humidity for 1~2 hours < Criteria>	onds or $400\pm10^\circ\mathrm{C}$ for 3^{+1}_{-0} seconds to $1.5\sim2.0\mathrm{mm}$ tor . I be left under the normal temperature and normal before measurement.
4.13	solder heat	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shal humidity for 1~2 hours <criteria></criteria> Leakage current	onds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mr tor. I be left under the normal temperature and normal before measurement.
4.13		Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shall humidity for 1~2 hours < Criteria>	onds or $400\pm10^\circ\mathrm{C}$ for 3^{+1}_{-0} seconds to $1.5\sim2.0\mathrm{mm}$ tor . I be left under the normal temperature and normal before measurement.
4.13	solder heat	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shal humidity for 1~2 hours <criteria></criteria> Leakage current	onds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mitor. I be left under the normal temperature and normal before measurement.
4.13	solder heat	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shal humidity for 1~2 hours <criteria> Leakage current Capacitance Change</criteria>	onds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mittor. I be left under the normal temperature and normal before measurement. Not more than the specified value. Within $\pm 10\%$ of initial value.
4.13	solder heat	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shall humidity for 1~2 hours <criteria> Leakage current Capacitance Change tan δ</criteria>	onds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mr tor. I be left under the normal temperature and normal before measurement. Not more than the specified value. Within $\pm 10\%$ of initial value. Not more than the specified value.
4.13	solder heat	Terminals of the capacit 260 ± 5 °C for 10 ± 1 sec from the body of capaci Then the capacitor shall humidity for 1~2 hours <criteria> Leakage current Capacitance Change tan δ</criteria>	onds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mr tor. I be left under the normal temperature and normal before measurement. Not more than the specified value. Within $\pm 10\%$ of initial value. Not more than the specified value.

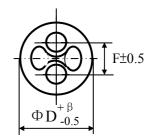
Issued-date: 2013-10-7	Name	Specification Sheet – GF							
Version	01		Page	10					
	STANDARD MANUAL								

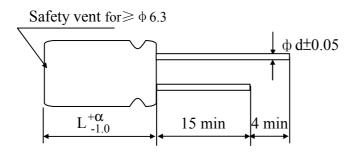
ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

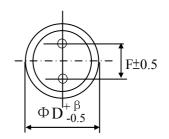
		oven, the condition acc	According to IEC60384-4No.4.7 methods, capacitor shall be placed in oven, the condition according as below:				
			mperature		ime		
		(1)+20°C		≪3	Minutes		
		(2)Rated low temperat	` '\ '		Minutes		
		(3)Rated high tempera		30 ± 2	Minutes		
	Change of	(1) to $(3)=1$ cycle, total	al 5 cycle				
4.14	temperature test	<criteria> The characteristic shall to</criteria>	meet the following req	uirement			
		Leakage current	Not more than the s	pecified v	alue.		
		tan δ	Not more than the s				
		Appearance	There shall be no le	akage of	electrolyte.		
		1 1 / IEC(0204					
		be exposed for 500 ± 8 h 40 ± 2 °C, the characteris	_	of 90~95	%R H .at	nent.	
		be exposed for 500 ± 8 h	hours in an atmosphere	of 90~95	%R H .at	nent.	
		be exposed for 500 ± 8 h 40 ± 2 °C, the characteris	hours in an atmosphere	of 90~95 he follow	%R H .at ing requiren	nent.	
		be exposed for 500 ± 8 h 40 ± 2 °C, the characteris Criteria> Leakage current	hours in an atmosphere stic change shall meet th	of 90~95 he following	%R H .at ing requiren	nent.	
4.15	Damp	be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria> Leakage current Capacitance Change</criteria>	hours in an atmosphere stic change shall meet the Not more than the spec	of 90~95 he following cified value.	%R H .at ing requiren ue.		
4.15	Damp heat test	be exposed for 500 ± 8 h $40\pm 2^{\circ}$ C, the characteris Criteria> Leakage current Capacitance Change $\tan \delta$	hours in an atmosphere stic change shall meet the Not more than the spectage within $\pm 20\%$ of initial spectage.	of 90~95 he following ciffed value al value.	%R H .at ing requirenue.		

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	11
	ST	ANDARD MANUAL		


ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES


4.16	Vent test	Condition> The following test only appl ≥Ø6.3 with vent. D.C. test The capacitor is connected was a current selected from Table 2>	rith its pola e 2 is applied rent (A)	rity reverse ed.	d to a DC p	ower source.	Then
4.17	Maximum permissible (ripple current)	Condition> The maximum permissible rip at 100kHz and can be applied Table-3 The combined value of D.C v rated voltage and shall not respectively. Frequency Multipliers: Coefficient Freq. (Hz) Cap. (μ F) ~180 220~560 680~1800 2200~3900 4700	d at maxim oltage and	um operation the peak A	ng temperat	ure	ed the


Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	12
	ST	ANDARD MANUAL		


5. Product Dimensions, Impedance & Maximum Permissible Ripple Current

RR Type Unit: mm

φD	5	6.3	8	10	12.5
F	2.0	2.5	3.5	5.0	5.0
φd	0.5	0.5	L<20:0.5, L>20:0.6	0	.6
α		L<20	: α=1.5; L≥2	$0: \alpha = 2.0$	
β		ф D<2	$0: \beta = 0.5; \qquad \Phi D \geqslant$:20: β =1.0)

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	13
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Table 3	

Voltage (C	Voltage (Code)		6.3V(0J)	
Cap. (μF)	Code	Case size ΦD×L(mm)	Ripple Current (mA rms)	Impedance (Ω)
180	187	6.3x11	340	0.220
220	227	6.3x11	340	0.220
270	277	6.3x11	340	0.220
220	227	6.3x11	340	0.220
330	337	8x12	640	0.130
390	397	8x12	640	0.130
470	477	8x12	640	0.130
470	4//			
560	567	8x12	640	0.130
680	687	8x12	640	0.130
820	827	8x12	640	0.130
820		10x12.5	865	0.080
1000	108	8x12	640	0.130
1000	108	10x12.5	865	0.080
1200	128	8x16	840	0.087
1200		10x12.5	865	0.080
1500	158	8x20	1050	0.069
1300	136	10x16	1210	0.060
1800	188	10x20	1400	0.046
2200	228	10x20	1400	0.046
2700	278	10x25	1650	0.042
2700	278	12.5x20	1900	0.035
2200	220	10x25	1650	0.042
3300	338	12.5x20	1900	0.035
3900	398	12.5x20	1900	0.035
4700	478	12.5x25	2124	0.030

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	14
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Voltage	e (Code)	10V(1A)				
C (F)	0.1	Case size	Ripple Current	Impedance		
Cap. (μF)	Code	φD×L(mm)	(mA rms)	(Ω)		
150	157	6.3x11	340	0.220		
180	187	6.3x11	340	0.220		
220	227	6.3x11	340	0.220		
270	277	6.3x11	340	0.220		
270	277	8x12	640	0.130		
220	227	6.3x11	340	0.220		
330	337	8x12	640	0.130		
390	397	8x12	640	0.130		
470	477	8x12	640	0.130		
560	567	8x12	640	0.130		
680	687	8x12	640	0.130		
820	827	10x12.5	865	0.080		
1000	100	8x16	840	0.087		
1000	108	10x16	1210	0.060		
1200	128	10x20	1400	0.046		
1500	158	10x20	1400	0.046		
1800	188	10x20	1400	0.046		
2200	228	10x20	1400	0.046		
2700	278	10x25	1650	0.042		
2/00	218	12.5x20	1900	0.035		
3300	338	12.5x25	2124	0.030		

Issued-date: 2013-10-7	Name	Specification Sheet – GF		
Version	01		Page	15
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

, 614486 (Code)	16V(1C)				
Can (v.E)		Case size	Ripple Current	Impedance		
Cap. (μF)	Code	$\phi D \times L(mm)$	(mA rms)	(Ω)		
47		5X11	210	0.580		
100	107	6.3x11	340	0.220		
120	127	6.3x11	340	0.220		
150	157	6.3x11	340	0.220		
130	137	8x12	640	0.130		
180	187	6.3x11	340	0.220		
180	10/	8x12	640	0.130		
220	227	6.3x11	340	0.220		
220	227	8x12	640	0.130		
270	277	8x12	640	0.130		
330	337	8x12	640	0.130		
390	397	8x12	640	0.130		
470	455	8x12	640	0.130		
470	477	10x12.5	865	0.080		
560	567	10x12.5	865	0.080		
680	687	8x16	840	0.087		
080	087	10x12.5	865	0.080		
820	827	10x16	1210	0.060		
1000	108	10x16	1210	0.060		
1200	128	10x20	1400	0.046		
1500	158	10x20	1400	0.046		
1000	100	10x25	1650	0.042		
1800	188	12.5x20	1900	0.035		
2200	228	12.5x20	1900	0.035		
2700	278	12.5x25	2124	0.030		

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	16		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Voltage (Code)		25V(1E)	
Cap. (µF)	Code	Case size	Ripple Current	Impedance
Сар. (µГ)	Code	$\Phi D \times L(mm)$	(mA rms)	(Ω)
82	826	6.3x11	340	0.220
100	107	6.3x11	340	0.220
120	127	8x12	640	0.130
150	157	8x12	640	0.130
180	187	8x12	640	0.130
220	227	6.3X11	340	0.220
220	221	8x12	640	0.130
270	277	8x12	640	0.130
270	277	10x12.5	865	0.080
	337	8x12	640	0.130
330		8X16	840	0.087
		10x12.5	865	0.080
390	397	10x12.5	865	0.080
470	477	8x16	840	0.087
4/0	4//	10x12.5	865	0.080
560	567	10x16	1210	0.060
680	687	10x16	1210	0.060
820	827	10x20	1400	0.046
1000	108	10x20	1400	0.046
1200	128	10x20	1400	0.046
1500	150	10x25	1650	0.042
1300	158	12.5x20	1900	0.035
1800	188	12.5x25	2124	0.030
2200	228	12.5x25	2124	0.030

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	17		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

	age (Code)		35V(1V)	
Com (v.E)		Case size	Ripple Current	Impedance
Cap. (μF)	Code	ΦD×L(mm)	(mA rms)	(Ω)
33	336	5X11	210	0.580
47	476	6.3x11	340	0.220
56	566	6.3x11	340	0.220
68	686	6.3x11	340	0.220
82	826	8x12	640	0.130
100	107	8x12	640	0.130
120	127	8x12	640	0.130
150	157	8x12	640	0.130
180	187	10x12.5	865	0.080
220	227	8x12	640	0.130
		8x16	840	0.087
		10x12.5	865	0.080
270	277	10x16	1210	0.060
		8x20	1050	0.069
330	337	10x12.5	865	0.080
		10x16	1210	0.060
390	397	10x16	1210	0.060
470	477	10x16	1210	0.060
560	567	10x20	1400	0.046
680	687	10x20	1400	0.046
020	927	10x25	1650	0.042
820	827	12.5x20	1900	0.035
1000	100	12.5x20	1900	0.035
1000	108	12.5x25	2124	0.030

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	18		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Vol	tage (Code)		50V(1H)	
C (F)	~ 1	Case size	Ripple Current	Impedance
Cap. (μF)	Code	ΦD×L(mm)	(mA rms)	(Ω)
106	106	5X11	100	1.500
33	336	6.3x11	295	0.300
39	396	6.3x11	295	0.300
47	476	6.3x11	295	0.300
56	566	8x12	555	0.170
68	686	8x12	555	0.170
82	826	8x12	555	0.170
100	107	10x12.5	760	0.120
120	127	8x16	730	0.120
120	127	10x12.5	760	0.120
150	157	10x16	1050	0.084
100	107	8x20	910	0.091
180	187	10x16	1050	0.084
270	277	10x25	1440	0.055
330	337	12.5x20	1660	0.045
390	397	12.5x20	1660	0.045
470	477	12.5x25	1950	0.034
560	567	12.5x25	1950	0.034

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	19		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Volt	tage (Code)		63V(1J)	
C (F)	G. 1.	Case size	Ripple Current	Impedance
Cap.(μF)	Code	$\Phi D \times L(mm)$	(mA rms)	(Ω)
22	226	6.3x11	115	0.960
27	276	6.3x11	115	0.960
33	336	6.3x11	115	0.960
39	396	8x12	232	0.504
47	476	8x12	232	0.504
56	566	8x12	232	0.504
68	686	8x12	232	0.504
82	826	10x12.5	314	0.344
100	107	8x16	300	0.360
100		10x12.5	314	0.344
120	127	10x16	357	0.248
150	157	8x20	362	0.264
180	187	10x20	466	0.168
220	227	10x20	466	0.168
270	277	12.5x20	690	0.128
330	337	12.5x20	690	0.128
390	397	12.5x25	922	0.096

Max Allowable Ripple Current:105°C,100kHz; Impedance:20°C,100kHz

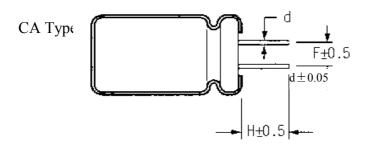
Vo	oltage (Code)		100V(2A)	
Cap.(μF)	Code	Case size фD×L(mm)	Ripple Current (mA)	Impedance (Ω)
15	156	6.3x11	115	0.960
27	276	8x12	232	0.504
39	396	8x16	300	0.360
47	476	10x12.5	314	0.344
56	566	8x20	362	0.264
68	686	10x16	357	0.248
82	826	10x20	466	0.168
100	107	10x20	466	0.168
120	127	12.5x20	690	0.128
180	187	12.5x25	922	0.096
220	227	12.5x25	922	0.096

Max Allowable Ripple Current: 105°C , $100\text{kHz}; \; Impedance: 20^{\circ}\text{C}$, 100kHz

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	20		
STANDARD MANUAL						

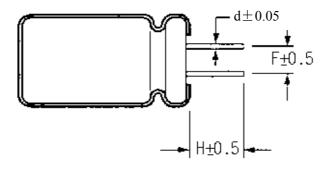
ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON


0.6

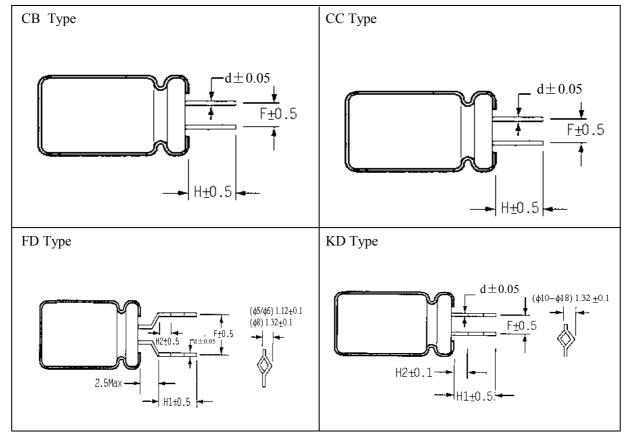
			Unit:	mm		
Shape Code	φD	ф5	Ф 6.3	Ф8	ф 10	ф 12.5
	F	2.0	2.5	3.5	5.0	5.0
CA	Н	3.0	3.0	3.0	3.0	3.0
	d	0.5	0.5	0.5/0.6	0.6	0.6
	F	2.0	2.5	3.5	5.0	5.0
CE	Н	5.0	5.0	5.0	5.0	5.0

0.5


0.5/0.6

0.6

0.5


CE Type

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	21		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

6. F	orming Dir	Un	it: mm				
	Shape Code	φD	Ф 5	Ф 6.3	Ф8	Ф 10	Ф 12.5
		F	2.0	2.5	3.5	5.0	5.0
	СВ	Н	3.5	3.5	3.5	3.5	3.5
		d	0.5	0.5	0.5/0.6	0.6	0.6
		F	5.0	5.0	5.0	5.0	5.0
	CC	Н	4.0	4.0	4.0	4.0	4.0
		d	0.5	0.5	0.5/0.6	0.6	0.6
		F	5.0	5.0	5.0		
		H1	4.5	4.5	4.5		
	FD	H2	2.0	2.0	2.0		
		d	0.5	0.5	0.5/0.6		
		F				5.0	5.0
	KD	H1				4.5	4.5
		H2				2.0	2.0
		d				0.6	0.6

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	22		
STANDARD MANUAL						

7. Taping Specification

Fig-1 ϕ 5 F=2.5mm(TU);

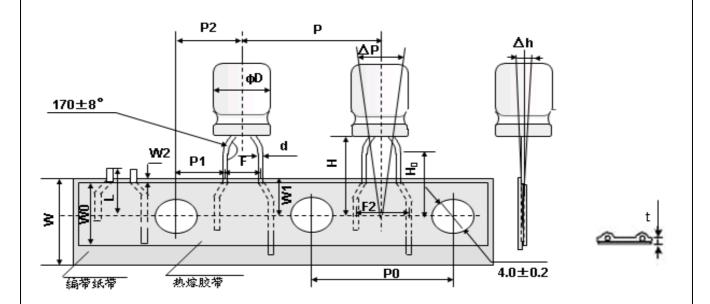
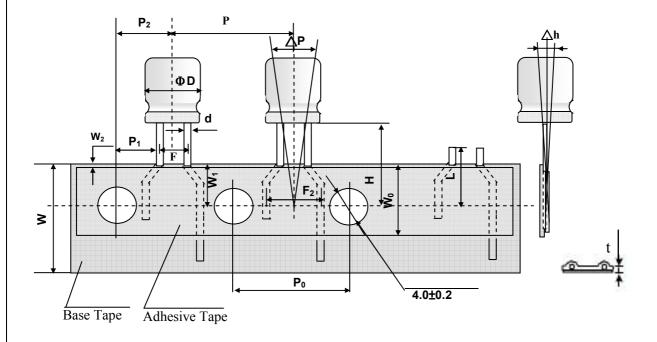
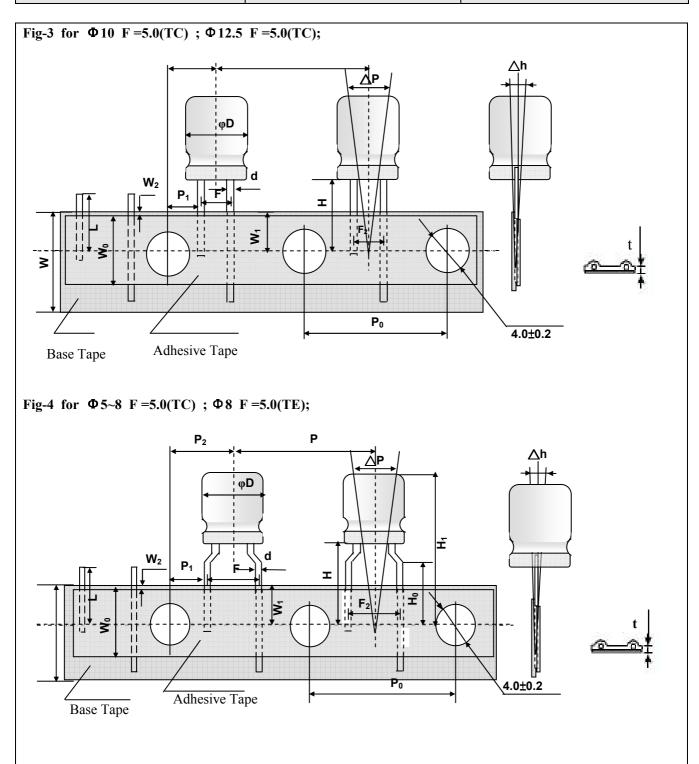
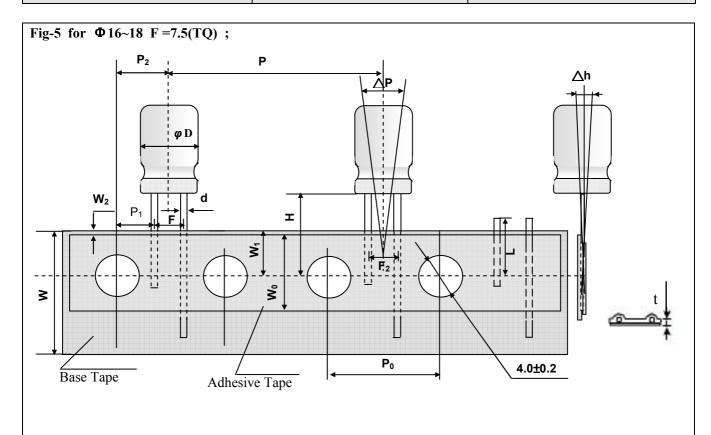




Fig-2 for $\Phi 5$ F =2.0(TT); $\Phi 6.3$ F =2.5(TU); $\Phi 8x5$ F =2.5(TU); $\Phi 8x7 \sim 20$ F=3.5mm(TV)



Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	23		
STANDARD MANUAL						

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	24		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	25		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

Remark: Maximum Taping Dimension: 18mm Diameter Unit: mm											
Item	Code	TT	Т	U	TV		TC	C		TE	TQ
Diameter	D	5	5	6.3	8	5 / 6.3	8	10	12.5	8	16/18
Height	A	5~15	9~15	9~15	10~20	9~15	10~20	9~30	15~35	10~20	15~40
Lead Diameter	d±0.05	0.45/0.5	0.5	0.5	0.5	0.5	0.5/0.6	0.6	0.6	0.5/0.6	0.8
Component Spacing	P±1.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	30
Pitch of sprocket holes	P ₀ ±0.2	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	15
Distance between centers of terminal	P ₁ ±0.5	5.1	5.1	5.1	4.6	3.85	3.85	3.85	5.0	3.85	3.75
Feed hole center to component center	P ₂ ±1.0				6.35				7.5	6.35	7.5
Distance between centers of component leads	F ^{+0.8} _{-0.5}	2.0	2.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	7.5
Distance between centers of component leads Adhesive Tape cover	$F_{2-0.5}^{+0.8}$	3.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	5.0	7.5
Carrier tape width	$W_{-0.5}^{+1}$	18	18	18	18	18	18	18	18	18	18
Hold down tape width	W_0		•		7min		•	•	12min	7min	12min
Distance between the center of upper edge of carrier tape and sprocket hole	W ₁ ±0.5		9								
Distance between the upper edges of the carrier tape and the hold down tape	W_2					3n	nax				
Distance between the abscissa and the bottom of the components body	+0.75 H _{-0.5}	18.5	18.5	18.5	18.5	18.5	20.0	18.5	18.5	18.5	18.5
Distance between the abscissa and the reference plane of the components with crimped leads	H ₀ ±0.5					16	16			16	
Cut off position of defectives	L		11 max								
Max. lateral deviation of the component body vertical to the tape plane	Δh		2 max								
Max. deviation of the component body in the tape plane	ΔΡ					1.3	max				

Issued-date: 2013-10-7	Name	Specification Sheet – GF					
Version	01		Page	26			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

8. List of "Environment-related Substances to be Controlled ('Controlled Substances')"

The latest version of <Substances Prohibited as per Sony-SS-00259>

The latest vers	ion of <substances as="" per="" prohibited="" sony-ss-00259=""></substances>					
	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
1100.7 11100011	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
D : 1	Polybrominated biphenyls (PBB)					
Brominated	Polybrominated diphenylethers(PBDE) (including decabromodiphenyl					
organic	ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin compo	ounds(TBT)					
Triphenyltin com	pounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Beryllium oxide						
Beryllium coppe	er					
Specific phthalate	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane s	sulfonates (PFOS)					
Specific Benzotri	azole					

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	27		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20 °C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tan δ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	28		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements.

Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3) Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	29		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~ φ16mm:2mm minimum, φ18~ φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Issued-date: 2013-10-7	Name	Specification Sheet – GF				
Version	01		Page	30		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1 \text{k} \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k \Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 - (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Issued-date: 2013-10-7	Name	Specification Sheet – GF					
Version	01		Page	31			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
 - The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
 - Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- . Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Issued-date: 2013-10-7	Name	Specification Sheet – GF					
Version	01		Page	32			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed $100\,^{\circ}\!\text{C}$ temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a $1000\,\Omega$, current limiting resistor for a time period of 30 minutes .

If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

- * Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.
- * Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Issued-date: 2013-10-7	Name	Specification Sheet – GF					
Version	01		Page	33			
STANDARD MANUAL							