Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed and tested for repetitive peak operation required for CD ignition, fuel ignitors, flash circuits, motor controls and low-power switching applications.

Features

- 150 A for 2 μs Safe Area
- High dv/dt
- Very Low Forward "On" Voltage at High Current
- Low-Cost TO-226 (TO-92)
- Pb-Free Packages are Available*

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{tabular}{ll} Peak Repetitive Off-State Voltage (Note 1) \\ (R_{GK}=IK, T_J=-40 to +110 ^{\circ}C, Sine Wave, \\ 50 to 60 Hz, R_{GK}=1 k\Omega) & MCR22-6 \\ MCR22-8 \\ \end{tabular}$	V _{DRM} , V _{RRM}	400 600	V
On–State Current RMS (180° Conduction Angles, T _C = 80°C)	I _{T(RMS)}	1.5	Α
Peak Non-repetitive Surge Current, @T _A = 25°C, (1/2 Cycle, Sine Wave, 60 Hz)	I _{TSM}	15	Α
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	0.9	A ² s
Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec, T_A = 25°C)	P _{GM}	0.5	W
Forward Average Gate Power (t = 8.3 msec, T _A = 25°C)	P _{G(AV)}	0.1	W
Forward Peak Gate Current (Pulse Width ≤ 1.0 μs, T _A = 25°C)	I _{FGM}	0.2	Α
Reverse Peak Gate Voltage (Pulse Width ≤ 1.0 μs, T _A = 25°C)	V _{RGM}	5.0	V
Operating Junction Temperature Range @ Rated V _{RRM} and V _{DRM}	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

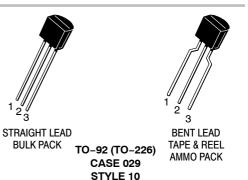
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	160	°C/W
Lead Solder Temperature (Lead Length ≥ 1/16" from case, 10 S Max)	TL	+260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®


http://onsemi.com

SCRs 1.5 AMPERES RMS 400 thru 600 VOLTS

MARKING DIAGRAMS

MCR22-x = Device Code

x = 6 or 8

A = Assembly Location

Y = Year WW = Work Week • Pb-Free Package

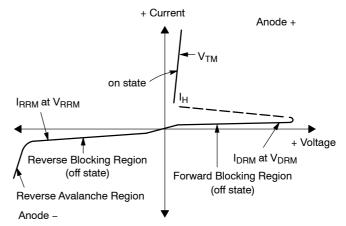
(Note: Microdot may be in either location)

PIN ASSIGNMENT				
1	Cathode			
2	Gate			
3	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		1	•	•	•	
Peak Repetitive Forward or Reverse Blocking Current (V_{AK} = Rated V_{DRM} or V_{RRM} ; R_{GK} = 1 k Ω)	T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}	- -	_ _	10 200	μ Α μ Α
ON CHARACTERISTICS						
Peak Forward On-State Voltage (Note 2) (I _{TM} = 1 A Peak)		V _{TM}	-	1.2	1.7	V
Gate Trigger Current (Continuous dc) (Note 3) $(V_{AK} = 6 \text{ Vdc}, R_L = 100 \Omega)$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _{GT}	-	30 -	200 500	μΑ
Gate Trigger Voltage (Continuous dc) (Note 3) $(V_{AK} = 7 \text{ Vdc}, R_L = 100 \Omega)$	T _C = 25°C T _C = -40°C	V _{GT}	- -	- -	0.8 1.2	V
Gate Non-Trigger Voltage (V_{AK} = 12 Vdc, R_L = 100 Ω)	T _C = 110°C	V _{GD}	0.1	-	-	V
Holding Current $(V_{AK}=12\ Vdc,\ R_{GK}=1k\Omega)$ Initiating Current = 20 mA	T _C = 25°C T _C = -40°C	I _H	- -	2.0	5.0 10	mA
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage ($R_{GK} = 1k\Omega$) ($T_C = 110^{\circ}C$)		dv/dt	-	25	-	V/μs

Pulse Width = 1.0 ms, Duty Cycle ≤ 1%.
 R_{GK} Current not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
I _H	Holding Current

CURRENT DERATING

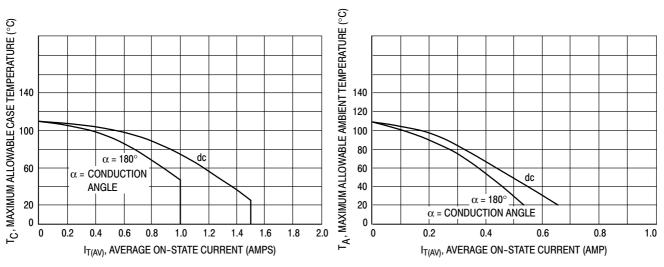
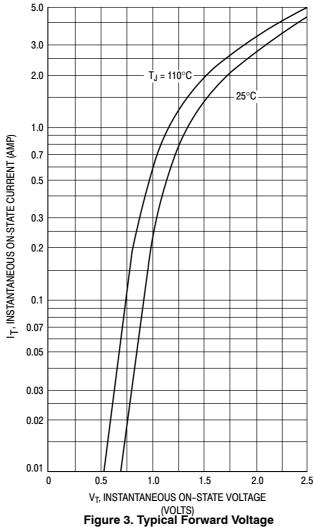



Figure 1. Maximum Case Temperature

Figure 2. Maximum Ambient Temperature

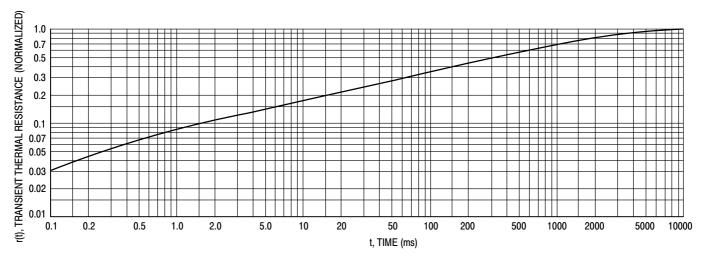


Figure 4. Thermal Response

TYPICAL CHARACTERISTICS

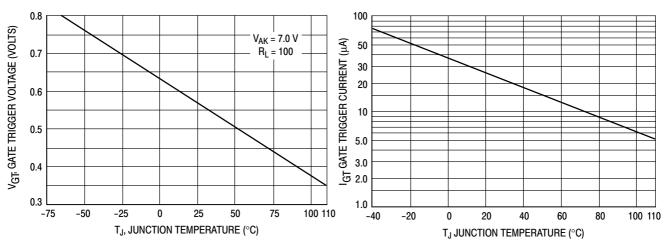


Figure 5. Typical Gate Trigger Voltage

Figure 6. Typical Gate Trigger Current

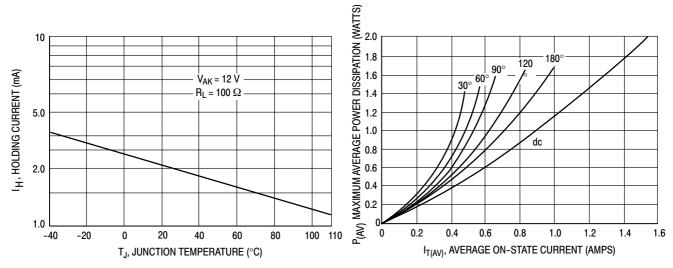


Figure 7. Typical Holding Current

Figure 8. Power Dissipation

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

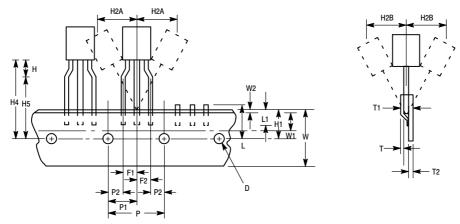
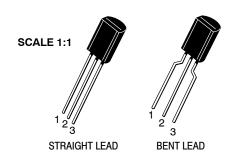


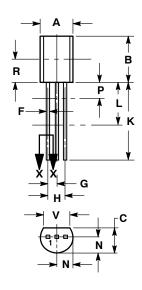
Figure 9. Device Positioning on Tape

		Specification				
		Inc	hes	Millir	neter	
Item	Symbol	Min	Max	Min	Max	
Tape Feedhole Diameter	D	0.1496	0.1653	3.8	4.2	
Component Lead Thickness Dimension	D2	0.015	0.020	0.38	0.51	
Component Lead Pitch	F1, F2	0.0945	0.110	2.4	2.8	
Bottom of Component to Seating Plane	Н	.059	.156	1.5	4.0	
Feedhole Location	H1	0.3346	0.3741	8.5	9.5	
Deflection Left or Right	H2A	0	0.039	0	1.0	
Deflection Front or Rear	H2B	0	0.051	0	1.0	
Feedhole to Bottom of Component	H4	0.7086	0.768	18	19.5	
Feedhole to Seating Plane	H5	0.610	0.649	15.5	16.5	
Defective Unit Clipped Dimension	L	0.3346	0.433	8.5	11	
Lead Wire Enclosure	L1	0.09842	_	2.5	-	
Feedhole Pitch	Р	0.4921	0.5079	12.5	12.9	
Feedhole Center to Center Lead	P1	0.2342	0.2658	5.95	6.75	
First Lead Spacing Dimension	P2	0.1397	0.1556	3.55	3.95	
Adhesive Tape Thickness	Т	0.06	0.08	0.15	0.20	
Overall Taped Package Thickness	T1	-	0.0567	_	1.44	
Carrier Strip Thickness	T2	0.014	0.027	0.35	0.65	
Carrier Strip Width	W	0.6889	0.7481	17.5	19	
Adhesive Tape Width	W1	0.2165	0.2841	5.5	6.3	
Adhesive Tape Position	W2	.0059	0.01968	.15	0.5	


NOTES:

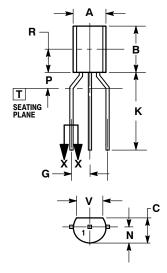
- 1. Maximum alignment deviation between leads not to be greater than 0.2 mm.
- 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
- 3. Component lead to tape adhesion must meet the pull test requirements.
- 4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- 5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- 6. No more than 1 consecutive missing component is permitted.
- 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
- 8. Splices will not interfere with the sprocket feed holes.

ORDERING & SHIPPING INFORMATION: MCR22 Series Packaging Options, Device Suffix


U.S.	Europe Equivalent	Shipping [†]	Description of TO-92 Tape Orientation		
	MCR22-8RL1	0000 / Tana			
	MCR22-8RL1G	2000 / Tape & Reel	Flat side of TO-92 and adhesive tape visible		
MCR22-6					
MCR22-6G		5000 H 11 / P	N/A, Bulk		
MCR22-8		5000 Units / Box			
MCR22-8G					
MCR22-6RLRA		2000 / T	D 1 1 1 1 7 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1		
MCR22-6RLRAG		2000 / Tape & Reel	Round side of TO-92 and adhesive tape visible		
MCR22-6RLRP		2000 / Tono 9 Amma Dook	Flat side of TO 00 and adhesive tone visible		
MCR22-6RLRPG		2000 / Tape & Ammo Pack	Flat side of TO-92 and adhesive tape visible		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**


DATE 08 MAY 2012

STRAIGHT LEAD

BENT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1994. CONTROLLING DIMENSION: INCHES.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS
- UNCONTROLLED.

 DIMENSION F APPLIES BETWEEN DIMENSIONS P

4.	DIMILI	INIOINI	ALLEILO	DLIVVI		VILIVOIC	JIVO
	AND L	. DIMEN	ISIONS D	AND J	APPLY I	BETWE	EN DI-
	MENS	IONS L	AND K MIN	MUMIK	. THE LI	EAD	
	DIMEN	ISIONS	ARE UNC	ONTRO	DLLED I	N DIME	ENSION
	P AND	BEYON	ND DIMEN	SION K	MINIM	UM.	
				1			

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
- UNCONTROLLED.
 DIMENSION F APPLIES BETWEEN DIMENSIONS P
 AND L. DIMENSIONS D AND J APPLY BETWEEN
 DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.44	5.21	
В	0.290	0.310	7.37	7.87	
С	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.46	0.53	
G	0.094	0.102	2.40	2.80	
J	0.018	0.024	0.46	0.61	
K	0.500		12.70		
N	0.080	0.105	2.04	2.66	
P		0.100		2.54	
R	0.135		3.43		
٧	0.135		3.43		

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT CASE 29-10

ISSUE A

DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	CATHODE GATE ANODE
2.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
PIN 1. 2.	ANODE	PIN 1.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
PINI 1	COLLECTOR EMITTER BASE	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1. 2.	EMITTER	PIN 1. 2.	MT 1
	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	2.	CATHODE ANODE GATE	2.	NOT CONNECTED ANODE CATHODE	2.	DRAIN GATE SOURCE
PIN 1. 2.	GATE DRAIN SOURCE	PIN 1.	BASE	PIN 1. 2.	RETURN INPUT OUTPUT	PIN 1. 2.	INPUT GROUND LOGIC		

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative